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Abstract 

 
 
Cost Growth in Department of Defense (DoD) major weapon systems has been an 

on-going problem for more than 30 years.  Previous research has demonstrated the use of 

a two-step logistic and multiple regression methodology to predicting cost growth 

produces desirable results versus traditional single-step regression.  This research effort 

validates, and further explores the use of a two-step procedure for assessing DoD major 

weapon system cost growth using historical data.   

We compile programmatic data from the Selected Acquisition Reports (SARs) 

between 1990 and 2001 for programs covering all defense departments.  Our analysis 

concentrates on cost growth in the research and development dollar accounts for the 

Engineering and Manufacturing Development phase of acquisition.  We investigate the 

use of logistic regression in cost growth analysis to predict whether or not cost growth 

will occur in a program.  If applicable, the multiple regression step is implemented to 

predict how much cost growth will occur.  Our study focuses on four of the seven SAR 

cost growth categories within the research and development accounts – schedule, 

estimating, support, and other.  We study each of these four categories individually for 

significant cost growth characteristics and develop predictive models for each. 
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ESTIMATING ENGINEERING AND MANUFACTURING DEVELOPMENT 

COST RISK USING LOGISTIC AND MULTIPLE REGRESSION  

 
 

I.  Introduction 

 

General Issue 

 The Department of Defense (DoD) budget has been under intense Congressional 

scrutiny and downward pressure since the 1980’s military build up under President 

Reagan.  Part of this scrutiny is justified, as the price of most new major weapons system 

programs skyrocket past their original estimated cost.  This increase in price, or cost 

growth, of major weapons system has averaged 20 percent over the past 30 years, 

according to a 1993 RAND study (Drezner, 1993:xiii-xiv).  Inevitably, these unexpected 

increases in program costs have manifested in requests for supplemental funding from 

Congress for the respective program.          

Today, the American public and Congress can no longer tolerate the persistent 

cost overruns on new weapons systems.  The DoD budget has been reduced 29 percent 

over the last 16 years, and Congress has enacted legislation to monitor and control 

weapons system cost overruns.  The legislation, passed in the 1980’s, called the Nunn-

McCurdy Act requires Congress to be notified of any program whose unit cost increases 

by 15 percent or more.  Any unit cost increase of 25 percent or more requires Pentagon 

certification that the program is vital to national security to continue operations 

(Weinberger, 2002).  Therefore, it is essential that DoD cost estimators (and program 



 

2 

managers) work to contain, and even reduce, the amount of cost growth exhibited by a 

weapon system.   

Cost growth in the procurement of major weapon systems can be the attributed to 

poor program management or contractor inefficiencies, however, it mainly stems from 

risk and uncertainties about the program.  The cost estimate must take into account not 

only the actual costs of the program under development but also the risks and 

uncertainties associated with the program.  Cost growth is defined as the ratio of a 

weapon system’s current estimate to some prior estimate, generally the Development 

Estimate (DE) (Hough, 1992:v).  To control cost growth, managers must focus on 

accurately assigning dollar values to risks, so that the original estimate from which cost 

growth is calculated is more accurate (Sipple, 2002:2).  

Specific Issue  

Cost estimators use a wide range of methodologies when assigning values to risk 

elements in a weapons system cost estimate.  The estimating methodology used is a 

function of the type of item being estimated and where the item is in the acquisition life 

cycle.  Early in the life cycle, when uncertainty is greatest, the estimator will utilize an 

expert opinion or analogy methodology to establish a value on each element of a 

program.  Individual elements are then summed to achieve the overall program estimate 

or baseline estimate.  Analogy is simply valuing the new estimate on a similar existing or 

analogous system.  These methods, as expected, are subjective and could be improved 

upon.   
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Later in the life cycle, the estimator will utilize historical or actual costs to value 

the program elements.  This method is potentially more accurate because more 

information about the program is known and uncertainty is reduced.  In this scenario, the 

baseline estimate is likely undervalued in terms of risk.  An alternative, less subjective, 

method of valuing and forecasting program estimates must be used earlier in the life 

cycle to reduce the measured DoD cost growth.   

Statistical regression methods have previously been proven effective in 

determining cost growth relationships, as well as, the ability to predict the amount of cost 

growth (Sipple, 2002:3).  This research seeks to build upon the work of Sipple (2002) in 

providing cost estimators a model to effectively estimate risk earlier in the acquisition life 

cycle so that overall DoD cost growth can be reduced.   

Scope and Limitations of the Study 

The “Selected Acquisition Reports (SARs) are the primary means by which DoD 

reports the status of major acquisitions to Congress” (Jarvaise, 1996:3).  They represent a 

vast collection of programmatic reports and data from which the majority of cost growth 

calculations are based (Hough, 1992:v).  The SARs are widely available and contain 

relatively reliable data on cost growth.  For these reasons, the SARs are the source of 

choice for cost growth analysis and the basis for our research.  The SARs provides two 

estimates for each program: the baseline estimate (usually the DE) and the current 

estimate (most recent available).  Additionally, the SARs breakdown each program’s cost 

variance into seven categories: Economic, Quantity, Estimating, Engineering, Schedule, 

Support, and Other (Hough, 1992:5; Drezner, 1993:7).  Any deviation from a program’s 
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baseline is then calculated in terms of one of these seven cost variance categories and 

reported in base-year and then-year dollars to account for inflation.  Comparisons can 

then be easily made between programs or over time.   

Overall, the SARs contain nineteen sections with pertinent program data in each.  

These sections provide additional details that are essential to conducting cost growth 

analysis.  In part, these sections include; mission and description, schedule and technical 

data, acquisition cost and variances, contract and production information, and a funding 

summary.      

In this research, we measure cost growth as a percentage increase from the DE as 

listed in the SAR.  This research will only focus on cost growth in the Research and 

Development, Test and Evaluation (RDT&E) accounts during the Engineering and 

Manufacturing Development (EMD) phase of acquisition.  Since we are building upon 

previous research in this area, we omit study of the Engineering changes cost variance 

category since it has already been analyzed in Sipple’s (2002) thesis.  Additionally, we 

will not consider the categories of Economic and Quantity cost variances as these 

categories, by convention, are usually beyond the control of the cost estimator.  

Moreover, the usefulness of these areas to our research sponsor is negligible.  Thus, we 

seek insight into what causes cost growth and the amount of cost growth we can expect 

from the remaining SAR categories: Estimating, Schedule, Support and Other.   

Since this is a follow-on research study we continue with the originally defined 

guidelines established in Sipple’s (2002) thesis.  That is, this study is based on a database 

comprised of only programs that use the DE as the baseline estimate and programs whose 

EMD phase of acquisition falls within the period 1990-2001.  Further, “only one SAR per 
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program is used, the most recent available, and in some instances, the most recent 

available DE-based SAR is the last SAR of the EMD phase” (Sipple, 2002:4).   

The SARs do have limitations, but none that impede its use as our source of data 

in this research.  However, there are some SAR limitations that further limit the scope of 

this research effort (e.g., security classification), and that some DEs may already contain 

some undisclosed monetary estimate of risk.  This research will only use data from 

unclassified programs.  Chapter III further describes these limitations.   

This research is an extension of the innovative methodology used by Sipple 

(2002).  Sipple’s unique two-step methodology first utilizes logistic regression to predict 

which programs will have cost growth, and then second, uses multiple regression to 

predict the amount of cost growth that will occur.  To the best of our knowledge, Sipple’s 

(2002) research is the first (and only) documented use of logistic regression for predicting 

cost growth.  Although, the use of multiple regression has been previously utilized to 

predict cost growth, the combination of the two together is on the forefront of the field.   

Research Objectives 

This study has three main objectives.  First, use logistic regression to determine if 

certain program characteristics predict whether a program experiences cost growth in the 

RDT&E budget during the EMD phase of development.  Logistic regression differs from 

multiple regression in that it predicts a binary response.  In our case the binary response 

is:  Does a program experience cost growth, Yes or No?  Second, the study seeks to find 

predictors of which cost growth occurs.  We use multiple regression to determine the 

amount (value) of cost growth in the RDT&E budget in the EMD phase of development.  
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Finally, we seek to develop a predictive model that may be used by cost estimators early 

in a programs acquisition life cycle to ascertain potential cost growth in the RDT&E 

budget in the EMD phase of program development (Sipple, 2002:5). 

Chapter Summary 

This research seeks to expand upon the cost estimating methodology developed in 

Sipple’s (2002) thesis.  The goal of this study is to provide cost estimators a model to 

effectively estimate and value risk earlier in a program’s acquisition life cycle.  The 

intent being, a reduction in the overall DoD cost growth rate from current levels.  The 

methodology we use is a two-step process one, perform logistic regression on historical 

SARs to identify potential cost growth within a program and then two, use multiple 

regression to predict the amount of cost growth.   
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II.  Literature Review 

 

Chapter Overview 

This chapter provides an overview of previous cost growth research.  We begin 

with a synopsis of the DoD acquisition process and current operating environment.  We 

continue with an analysis of risk and uncertainty factors that effect cost growth, and 

follow with a comprehensive review and discussion of pertinent cost growth research as 

it relates to ours.  The knowledge and insight garnered from this literature review assists 

us in building a model that predicts RDT&E cost growth during the EMD phase of 

acquisition with the intent of reducing overall DoD cost growth.      

The Acquisition Process 

An awareness of the acquisition process is an important first step in understanding 

where cost growth occurs, and how it is measured.  The Department of Defense 

Instruction (DoDI) 5000.2, Operation of the Defense Acquisition System, establishes the 

management framework, policy, and guidance for translating “mission needs” into major 

weapon systems acquisition programs.  The process, officially known as the DoD 

Acquisition Process, consists of four milestones (otherwise known as decision points), 

four phases, and three activities (DoDI 5000.2).  The four milestones are best recognized 

as: MS 0, MS I, MS II and MS III, however, a January 2001 change to DoDI 5000.2 

reconfigures the four milestones to three milestones and renames them: A, B, and C.  

Since this research is based on data from the Selected Acquisition Reports (SAR) for 

programs having an EMD phase of development from 1990 – 2001, the old format and 



 

8 

terminology is used throughout this report.  The four (old) phases of the acquisition 

process are: Phase 0 - Concept Exploration; Phase I – Program Definition and Risk 

Reduction, Phase II – Engineering and Manufacturing Development, and Phase III – 

Production, Fielding/Deployment, and Operational Support (DoDI 5000.2).  The three 

activities are: Pre-System Acquisition, System Acquisition, and Sustainment.     

 A brief explanation of each of the milestones and phases is listed for clarity.  The 

descriptions are taken from Howard Jaynes’ 1999 thesis on Correlation Analysis: Army 

Acquisition Program Cycle Time and Cost Variation, which serves as an excellent source 

of clear, concise acquisition process information (Jaynes, 1999:11-13).  See Jaynes for 

further details on the acquisition process.    

• Milestone 0: conduct concept studies.  Validation of the mission need and 

identification of possible alternatives.  Approval of MS 0 by the Defense 

Acquisition Board (DAB) authorizes entry into Phase 0.    

• Phase 0: Concept Exploration (CE).  The mission need and the alternatives are 

further defined in terms of cost, schedule, and performance objects.  Costs are 

incorporated in the Acquisition Program Baseline (APB).  Acquisition 

Strategies are developed and the Operation Requirements Documents (ORD) 

is prepared.       

• Milestone I: official approval to begin a new program.   

• Phase I: Program Definition and Risk Reduction (PDRR).  The program is 

defined in terms of designs and technological approaches.  Prototyping and 

early operational assessments are used to reduce risk.  Identification of cost 

and schedule trade-offs.   
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• Milestone II: approval to enter Phase II.  The Milestone Decision Authority 

(MDA) evaluates the acquisition strategy and updated APB (development 

baseline) of the program before authorizing continuation.  Note: this is the 

estimate we use in our research to calculate cost growth.     

• Phase II: Engineering and Manufacturing Development.  The program is 

transformed into a cost-effective, stable design.  Developmental testing is 

conducted to ensure performance capabilities are satisfied and Low Rate 

Initial Production (LRIP) is authorized to further validate the new system.   

• Milestone III: approval to enter Phase III.  MDA reviews the acquisition 

strategy and updated APB (production baseline) program before approving 

entry in Phase III.     

• Phase III: Production, Fielding/Deployment and Operational Support.  The 

program enters full rate production and works to achieve Initial Operational 

Capability (IOC).  IOC is the first deployment of a weapons system to an 

operational unit.     

The first step in building a model to predict cost growth is to define a method for 

computing cost growth.  Within the DoD, there are several methodologies for calculating 

cost growth, with the main difference being “the purpose or objective” of the analysis 

being conducted (Calcutt, 1993, 7-8).  Cost growth generally refers to the difference (in 

price) between a program’s inception or initial estimate and the most recent or final total 

estimate of cost for an acquisition program (Hough, 1992:10).   

Our research continues with the originally defined cost growth computation 

established by Sipple (2002).  Which defines cost growth as the percentage price increase 
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from the Development Estimate (DE) to the most recent available current estimate as 

listed in the SAR (Sipple, 2002:3).  Figure 1 depicts where the DE fits into the acquisition 

framework.              

 

Planning 
Estimate (PE)

Production Estimate 
(PdE)

Development 
Estimate (DE)

ProcRDT&E ProcRDT&E ProcRDT&E

Acquisition Timeline:

Phase:

SAR:

PDRR EMD Prod

IIMilestone: I III

 

Figure 1 - Acquisition Timeline (Dameron, 2001:4) 

The Environment 

We now explore some of the environmental factors that influence cost growth.  

Since the fall of the Berlin Wall, the DoD budget has been under ever increasing 

downward pressure, falling from a high of $418.4 billion in 1985 to $296.3 in 2001 

billion (29.18%) (Jaynes, 1999:4).  All levels of the DoD structure feel the effects of this 

decline.  Doing more with less is the daily mantra, particularly within a major weapons 

system program office.  Moreover, weapons programs with exorbitant cost growth during 

this period of reduced funding, have garnered harsh Congressional and Presidential 

attention.  For example, in January 1991(then) Secretary of Defense Cheney cancelled the 
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Navy A-12 program after costs inexplicably skyrocketed and “no one could tell him the 

program’s final cost” (Christensen, 2002:105).   

In January 2002, President Bush renewed emphasis on “realistic costing” as a way 

to control spiraling defense spending in this austere funding environment (Grossman, 

2002:1).  The idea of “realistic costing” is not new.  Administrations in the early eighties 

also advocated realistic costing as a means to control spending (Sipple, 2002:9).  

Realistic costing recognizes that many programs routinely underestimate the true cost of 

development; they low-ball their initial price to get funding and then once funded, lobby 

for upward adjustments to cover true costs (Weinberger, 2002).  Realistic costing implies 

that if program estimate were more realistic, hence more accurate, cost growth would be 

contained.  Given such an austere funding environment, and the current political scrutiny, 

we conclude there is considerable pressure to deliver more accurate cost estimates within 

DoD.  Our research seeks to satisfy this need for realistic cost estimates.   

Risk and Uncertainty  

What exactly do ‘risk’ and ‘uncertainty’ mean, and how do they relate to cost 

growth?  According to a PricewaterhouseCoopers guide on Uncertainty and Risk, “the 

word ‘uncertainty’ means a number of different values can exist (Rodgers, 199:1).  ‘Risk’ 

means the possibility of loss or gain as a result of uncertainties.”  Consequently, we 

identify that cost growth is not a single static number but a range of values, and recognize 

there is a possibility that costs could go up or down in price.  Thus, an element of risk is 

involved in cost growth.  This point may seem obvious but it is crucial to understanding 

the characteristics of risk and uncertainty.  Our research begins with the knowledge that 
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cost growth encompasses elements of both uncertainty and risk.  Uncertainty implies an 

alternate value(s) can exist and risk is the chance of incurring a gain or loss as a result of 

the alternate value(s).               

Characteristics 

The Air Force Materiel Command’s (AFMC) Financial Management Handbook, 

clearly states, “cost estimating deals with uncertainty.”  The dilemma is that cost 

estimates try to calculate the cost of a system that will be designed, constructed, and 

completed in the future.  It is the cost estimator’s job to quantify the possible probability 

distribution associated with that future cost (AFMC Financial Management Handbook, 

2001:11).  The cost estimate is simply one value or one prediction of that event.  The 

AFMC Handbook describes ‘risk’ as the effect from uncertainties and consequences of 

future events, and “risk is the summation of the probable effect of unknown elements in 

technical, schedule or cost related activities within a program” (AFMC Financial 

Management Handbook, 2001:11).  The wording of this definition, suggests some type of 

valuation, in terms of dollars, be made for these separate areas along with a probability 

distribution to represent the associated range of possible values.  Consequently, our 

research quantifies risk as the unknowns in terms of the characteristics of technical, 

schedule and cost, and also includes a probability distribution to show the range of 

values.   

Risk Estimating Methods 

We now focus on methodologies used to assess probabilistic values.  Within the 

cost estimating community several methods exist to assess and quantify risk.  Each 
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method’s use depends on many factors including: type of estimate, type of risk, estimate 

accuracy, level of detail needed, estimator skill, and time to complete the estimate.   

  The AFMC handbook details three methods for assessing the likelihood of an 

event occurring:  a posteriori, a priori, and subjective judgment: 

1) The first method, a posteriori, or “after the fact” relationship to 
past events (direct knowledge), is based on some previous 
occurrence such as the cost outcome of previous projects 
conducted by the organization.  If enough samples from the past 
history (the population) are drawn, the probability of the next event 
occurring in a particular way may be estimated.  A methodology 
like Monte Carlo simulation may also be used.  The Monte Carlo 
simulation is conducted where the analyst determines the 
probability of future events by using an experimental model to 
approximate expected actual conditions.  Such a model is 
fashioned from previous histories of similar projects. 

2) Sometimes a distribution of possible outcomes for an event is not 
based on experience or sampling but on a priori, or “before the 
fact” theoretical probability distribution.  The use of the closeness 
of the assumptions used in developing the theoretical distribution 
is to the real world situation being analyzed. 

3) Many times an analyst will have to use a subjective judgment 
(indirect knowledge) in estimating probability.  This approach 
relies on the experience and judgment of one or more people to 
create the estimated probability distribution.  The result is known 
as a subjective probability.  A distribution estimate is an analysis 
by one or more informed persons of the relative likelihood of 
particular outcomes of an event occurring.  Distribution estimates 
are subjective.  An example of this approach is the Delphi method.  
(AFMC Financial Management Handbook, 2001:8-9; Sipple, 
2002:14-15) 

 

The Ballistic Missile Defense Organization (BMDO) cost estimating community 

utilizes a spectrum of five different risk assessment techniques to prepare estimates.  The 

application of the five methods differs by the degree of difficulty and the required 

precision (accuracy) needed in the estimate.  Figure 2 shows a chart of BMDO’s risk 

methods (Coleman, 2000:4; Sipple, 2002:17).   
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Figure 2 - Risk Assessment Techniques (Coleman, 2000:4-9) 

A brief explanation of each of the methods in Figure 2 is detailed below:  

• Detailed Network and Risk Assessment: is the most precise and most difficult 

to apply.  It requires a very detailed schedule and task breakout.  It uses a beta 

or triangular distribution to schedule item durations and creates a stochastic 

model from which to estimate the risk of a schedule slip.  The estimator uses 

the Monte Carlo Simulation method to estimate the cost (Coleman, 2000:4-9). 

• Expert-Opinion-Based: relies on surveys of experts to determine the possible 

distributions of Work Breakdown Structure (WBS) item costs.  Uses Monte 

Carlo simulation to estimate a range of possible costs.  Assumes experts are 

accurate (Coleman, 2000:12). 
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• Detailed Monte Carlo Simulation: C/WBS is the Cost or Work Breakdown 

Structure.  Uses Monte Carlo Simulation, but relies on historical data to 

develop probability distributions of cost outcomes (Coleman, 2000:16).   

• Bottom Line Monte Carlo/Bottom Line Range/Method of Moments: may use 

Monte Carlo Simulation, but on higher levels of the WBS.  Other uses include 

a limited database, analogy methodology or expert opinion to determine risk 

estimates (Coleman, 2000:4). 

• Add a Risk Factor/Percentage: is the least precise and easiest technique to use.  

Relies on technical expert judgment to assign a high-level, subjective risk 

factor for the estimate (Coleman, 2000:4). 

Past Research in Cost Growth 

Our goal is to “realistically estimate” costs and ultimately build a prediction 

model for cost growth within the EMD phase of acquisition.  We have looked at what 

cost growth is, how it is calculated and the environmental factors that influence it.  We 

now turn our attention to past research efforts in seeking further insight into the causes of 

cost growth.   

Much has been written in the past regarding cost growth analysis.  For example, 

in James A. Gordon’s 1996 thesis, he complies a partial historical listing of studies 

conducted on the subject by RAND and AFIT (see Tables 1 and 2).  While each of these 

studies provides valuable clues to understanding the characteristics and causes of cost 

growth, each also differs from the study at hand in purpose, scope, or methodology.  We 

find one study that uniquely encapsulates much of the previous cost growth research and 
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applies it to a scope similar to ours: Vincent Sipple’s (2002) thesis.  Hence, we utilize 

Sipple’s (2002) thesis for its exhaustive research, meticulous detail, and correlation with 

our study as a benchmark for our research effort.  

Table 1 - RAND Reports (Gordon, 1996:2-2) 

Author (Year) Findings Sensitivity Factors 
Jarvaise, et al. (1996) Defense System Cost 

Performance Database 
Derived from SARs 

Drezner, et al. (1993) Cost Estimates biased toward 
underestimation by about 20% 
from PE and DE and 2% from 

PdE 

Program Size, Maturity 

Drezner (1992) No demonstrated relationship 
between prototyping and cost or 

schedule outcomes (67) 

No Program Phase, Not System Type 

Hough (1992) Selected Acquisition Reports can 
Delay, Mask or Exclude 
Significant Cost Growth 

Economic, Quantity, Schedule, 
Engineering, Estimating and Other 

Changes 
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Table 2 - AFIT Theses (Gordon, 1996:2-3) 

Author (Year) Findings Sensitivity Factors 
Nystrom (1996) Complex non-linear EAC 

methods not superior to simpler 
index based EAC methods 

Stage of Completion, System Type, 
Program Phase, Contract Type, Service 

Component, and Inflation 
Buchfeller and Kehl 

(1994) 
No Significant Differences in 

Cost Variances between 
categories 

Not Service, Not Program Phase, Not 
Contract Type, Not Stage of 

Completion 
Elkinton and Gondeck 

(1994) 
BAC Adjustment Factors derived 
from Historical “Cost Growth” do 

not Improve EACs 

Not Contract Type, Not Stage of 
Completion 

Pletcher and Young 
(1994) 

Contracts which Improved Cost 
Performance over time differ 

from those which Worsen 

Performance Management Baseline 
Stability 

Terry and Vanderburgh 
(1993) 

SCI based EAC best predictor of 
CAC for all Stages of Contract 

Completion 

Contract Completion Stage, Program 
Phase, Contract Type, Service 

Component, System Type, Major 
Baseline Changes, but not Management 

Reserve 
Wandland (1993) Completed Contracts have more 

“Cost Growth” than Sole Source 
Not Contract Type, Not Absolute Price 

Wilson (1992) Cost Overruns at Completion are 
Worse than between 15 and 85% 

complete (α =.15) 

Service (except Navy), Contract Type, 
System Type, and Program Phase, but 

not relative time 

Singleton (1991) “Cost Growth” can be predicted 
based on three factors 

Schedule Risk, Technical Risk and 
Configuration Stability 

Obringer (1988) “Cost Growth” is not attributable 
to increased Industry Direct or 
Overhead to Total Cost Ratio 

Specific Contractors (8 of 16) showed 
growth between 1980 and 1986 

Blacken (1986) “Cost Growth” varies with 
Characteristics of Contract 

Changes 

Scope, Number of Effected SOW 
Pages, Contract Type, Change Type, 

Time to Definitize, Time to Negotiate, 
Not to Exceed Estimate, Stage of 

Completion, Stage of Development, 
Schedule Changes, Length of ECP, 
Length of Period of Performance 

 

Sipple (2002) provides a comprehensive review of the 12 previous cost growth 

studies listed in Table 3.  Sipple extracts numerous bits of data for developing predictor 

variables from each of these studies, as well as, valuable insight to the root causes of cost 
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growth.  Of these, we take particular note of the NAVAIR and 1993 RAND findings as 

these studies most closely align with our research. 

Table 3 - Sipple Thesis (Sipple, 2002:20-44) 

Author (Year) 
IDA (1974) 

Woodward (1983) 
Obringer (1988) 
Singleton (1991) 
Wilson (1992) 
RAND (1993) 

Terry & Vanderburgh (1993) 
BMDO (2000) 

Christensen & Templin (2000) 
Eskew (2000) 

NAVAIR (2001) 
RAND (2001) 

 

The NAVAIR, study is significant to us because it evaluates cost growth, from 

SAR data (our database) through the implementation of “cohort tracking” (Dameron, 

2001:7).  The term “cohort tracking” is used to group cost growth according to similar 

characteristics.  The five groups they identify are:   

• RDT&E cost growth for programs with a planning estimate (PE) and a 

development estimate (DE), 

• RDT&E cost growth for programs with a DE only, 

• Procurement cost growth for programs with a PE, a DE, and a production 

estimate (PdE), 

• Procurement cost growth for programs with a DE and a PdE only, 

• Procurement cost growth for programs with a DE only (Dameron, 2001:10). 
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 Thus, the use of cohort tracking isolates what we seek to predict; RDT&E cost 

growth with a DE estimate.  Specifically, NAVAIR finds the PE and DE cohort has 30 

percent RDT&E cost growth and the DE-only cohort has 25 percent RDT&E cost 

growth.  NAVAIR also finds a significant linkage between the phases of acquisition and 

cost growth and between the appropriations.  Of particular interest to us, is a strong 

connection between RDT&E cost growth in the PDRR phase and RDT&E in the EMD 

phase (Dameron, 2001:14).  Such knowledge, offers us a “leading” indicator for EMD 

RDT&E cost growth.  Additionally, NAVAIR finds a link between cost growth in the 

RDT&E appropriation and the procurement appropriation.    

These findings indicate a substantial “forward” roll of costs as a program 

develops overtime.  Thus, such findings corroborate the historical cost growth trend cited 

by Drezner and drive home the need for research in this area.  We take away the 

knowledge that if cost growth appears at any phase of development, subsequent phases 

will also experience cost growth.  Such insight leads us to consider some type of leading 

indicator in our models to forecast cost growth, as well as, opens the door for possible 

follow-on research to connect EMD to the production phase and the PDRR phase to 

EMD.     

The RAND 1993 study is noteworthy due to its use of (and extensive history 

with) the SAR data and its prominence in the cost growth analysis arena.  Within DoD, 

RAND methodologies and practices are usually the de-facto standard.  RAND establishes 

that inflation and quantity have the greatest effect on cost growth.  Yet, since these two 

factors are already included as a basic premise of a cost estimate, RAND establishes a 

procedure of excluding them from their data before analyzing cost growth.  To be 
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consistent, we also will follow this approach in our research.  RAND enumerates on 

several other factors that relate to cost growth but ultimately concludes, “no single factor 

explains a large portion of the observed variance in cost growth outcomes” (Drezner, 

1993: 49).   

Sipple argues the reason RAND draws this conclusion is that it “comes from a 

top-level, exploratory analysis of the total cost growth data.  Whereas, RAND finds no 

significant explanatory variables for overall cost variance, the possibility exists that 

breaking down cost growth into its components might uncover some significant 

explanatory variable” (Sipple, 2002:35).  For the purpose of this research, we utilize the 

predictor variables detailed by RAND but follow Sipple’s methodology of using those 

variables to predict cost growth in single compartmentalized area vice an overall 

approach.        

Sipple’s (2002) work seeks to predict cost growth of RDT&E accounts in the 

EMD phase of acquisition, using a SAR database spanning 1990 – 2000.  Sipple 

measures cost growth as a percentage increase in cost from the DE, as recorded in the 

SAR, and focuses specifically on predicting the SAR cost growth category of 

“Engineering.”  Sipple first identifies the existence of a mixture distribution – a discrete 

point mass coupled with a continuous distribution.  In this case, the discrete mass, 

centered on zero, represents programs with zero cost growth. 

To account for the mixture distribution, Sipple uses a unique and innovative (for 

the cost community) two-step process to estimate cost growth.  The two-step process 

entails the use of first, logistic regression to distinguish between those programs that have 
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cost growth and those that do not.  Second, the use of multiple regression to predict the 

amount of cost growth that will occur given there is cost growth.  

To the best of our knowledge, Sipple is the first to use logistic regression for cost 

estimation purposes.  Logistic regression predicts a binary (1/0 or yes/no) response from 

discrete data.  Sipple demonstrates through the use of four regression models (A, B, C, D) 

that the combination of logistic and multiple regression produce similar predictive results 

as a traditional single-step multiple regression cost estimating methodology.  However, 

the two-step methodology is preferred to the single-step methodology because of the 

stronger statistical foundation achieved with the two-step method.   

First, Sipple builds model A to predict whether a program will have cost growth 

(yes or no?) using logistic regression.  Model A uses all 90 data points in Sipple’s 

database which represent programs with both positive and negative cost growth.  

Programs with positive cost growth are converted to a “yes” response while zero or 

negative cost growth programs are converted to a “no” response.  Next, model B is built 

to predict the amount of cost growth that will occur using only those programs that 

experience cost growth (47 of the 90 data points have cost growth).  A log transformation 

of the Y response is used to correct for heteroskedasicity or non-constant variance of the 

residuals.  Sipple finds that without such a transformation none of the models pass the 

underlying Ordinary Least Squares (OLS) statistical assumptions test of normality and 

constant variance.  The use of models A and B together is then established as the “two-

step” process baseline for comparison with the other models.   

Model C is built as an alternative to model B except that the Y response is not 

transformed.  Hence, model C is built from the same 47 data points as model B but does 
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not correct for the statistical assumptions tests.  Sipple uses this model to compare the 

difference in predictive ability of a model without statistical foundation to the B model 

with correct statistical assumptions.  Accordingly, Sipple finds that none of these C 

models pass the tests for normality and constant variance.  Lastly, model D is built to 

ascertain the effects of not recognizing the mixture distribution and overlooking the OLS 

statistical assumptions.  Thus, model D is created using the entire 90 data point set 

(without logistic regression) and the Y response is not transformed.  This model tests the 

effects of the traditional single-step approach to cost estimating versus the two-step 

(model A & B) combination.  Sipple uses stepwise regression to build this model and 

again ignores OLS statistical assumptions tests (because all models fail without the log 

transformation).      

Sipple validates all four models with a 25-point “withhold” data set which 

represents 20 percent of his initial data set.  Of the 25 data points, 12 have missing values 

for model A leaving 13 data points for validation of this model.  Sipple demonstrates that 

a seven-variable logistic regression model (A) accurately predicts 9 out of 13 data points 

during validation for an almost 70 percent accuracy rate (Sipple, 2002, 82).  For, model 

B’s validation, only 14 of the 25 data points are used (11 have no cost growth).  Sipple 

finds a three variable OLS model is the preferred model, with an Adj R2  0.4645 and 

validates with 69.23 percent of observations within an 80 percent prediction bound 

(Sipple, 2002:87-88).   

For model C, Sipple finds that models B and C perform “on par” with each other 

except that doubts about model C’s inferential uncertainty overshadow the results.  

Model C’s non-transformed Y response precludes it from passing the Shapiro-Wilk test 
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for normality and the Breush-Pagan test for constant variance.  Furthermore, significant 

influential outliers exist which could not be eliminated from the data without causing 

more data points to become influential (Sipple, 2002:90).  For model D’s validation, the 

entire 25 point withhold data set is used to mirror the premise of model D (i.e., single step 

cost estimation).  Sipple finds model D’s results similar to that of model C’s – failure of 

any of the models to pass statistical assumptions tests for normality and constant variance 

of the residuals, as well as, the existence of numerous influential data points.  Hence, the 

results from models C and D are unreliable and dubious at best for drawing statistical 

conclusions (Sipple, 2002:117).   

Our research seeks to expand Sipple’s findings in that we seek to predict cost 

growth in the SAR categories of Estimating, Schedule, Support and Other, using the 

methodology of models A and B only.  Models C and D are not duplicated since these 

models use are not reliable for cost estimators.   

Chapter Summary 

In this chapter, we outline an operational understanding and knowledge of what 

cost growth means, how it is calculated and the genetic make-up of DoD cost growth.  

We reference past cost growth studies regarding the causes of cost growth and obtain 

clues of possible predictor variables to use in our research.  We follow this literature 

review in the next chapter by highlighting our methodology to build upon Sipple’s (2002) 

work.      
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III.  Methodology 

 

Chapter Overview 

This chapter enumerates the procedures we use to perform this research.  We first 

discuss our database and its limitations.  We follow with details of our data collection 

process and list candidate variables for model development.  Finally, we discuss our 

exploratory data analysis results and our methodology for performing logistic and 

multiple regression.  

Database 

The Selected Acquisition Reports (SAR) are the source data for this study.  The 

SARs contain a plethora of programmatic information on each major acquisition program 

of the DoD.  Each program included in the SAR submits specific required information 

annually to SAR administrators, currently the Office of the Under Secretary of Defense 

for Acquisition and Technology.  This information is categorized into nineteen different 

sections of the SAR and includes historical, schedule, cost, budget, and performance 

information.  The SAR only reports on programs that meet specific dollar thresholds, 

which constitute DoD’s most visible and highest interest level programs, otherwise 

known as ACAT IC or D programs (Knoche, 2002:1).   

Although, the specific ACAT reporting criteria changes over time, the SAR 

database consistently represents programs that are the U.S government’s most vital.  As 

such, the majority of the programs included in the SAR carry some level of security 

classification: classified, confidential or restricted.  For our research, we collect only 

limited programmatic and cost data, which is normally not classified.  However, if the 
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information we seek on an individual program is specifically classified, we omit the use 

of that piece information in our research.  

The SAR format provides two estimates for each program: the baseline estimate 

and the current estimate.  The SAR may also include a third estimate, one of the overall  

“approved program” which reflects the latest program decision memorandum (Hough, 

1992:4).  The SAR catalogs any deviations from these “programmed budgets” into one of 

seven different cost variance categories.  The cost variances are reported in both base-

year (year of initial program funding) and then-year (base-year adjusted for inflation) 

dollars.  A program’s total cost variance is then the sum of these seven cost variances.  

The seven SAR cost variance categories are:  

• Economic:  changes in price levels due to the state of the national 
economy 

 
• Quantity:  changes in the number of units procured 

• Estimating:  changes due to refinement of estimates 

• Engineering:  changes due to physical alteration 

• Schedule:  changes due to program slip/acceleration 

• Support:  changes associated with support equipment 

• Other:  changes due to unforeseen events (Hough, 1992:5; Drezner, 

1993:7) 

Our research uses the base-year dollar cost variances to conduct data analysis.  

We choose base-year dollars, which exclude inflationary affects, so that we can easily 

convert individual estimates into a single base year and then draw comparisons between 

programs.  We convert all program estimates to CY $2002 dollars so that we can evaluate 
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cost growth in terms of today’s dollars.  Additionally, we focus only on programs that 

have a Development Estimate (DE) as their baseline estimate as reported in the SAR.          

By convention, when analyzing cost growth, the cost analyst routinely normalize 

the data to account for the effects of inflation and quantity changes, since these items can 

have a substantial impact on overall cost growth.  Our research also follows this 

convention but we do not make manual adjustments to the program data, since the SAR 

pre-computes these values and incorporates them as two of the seven cost variance 

categories (quantity and economic). 

As mentioned in chapter II, we follow many of the procedures laid out in the 1993 

RAND report yet, in one situation we diverge.  RAND utilizes only positive cost 

variances (growth) in its analysis.  In contrast, our study takes into account both zero and 

negative cost variances for use in our logistic regression analysis and model building.  

Thus, we collect all cost variance data, not just exclusively positive variance.   

Also discussed in chapter II, an area of consternation in computing cost growth is 

the identification of which baseline to best measure cost growth from.  The SAR offers 

three different possible baseline estimates from which to choose; the planning estimate 

(PE), the development estimate (DE), and the production estimate (PdE).  These 

estimates occur before the start of Milestone I, II, and III, respectively.  According to 

RAND, cost estimates performed later in a programs life cycle are more accurate and 

reflect improved program information and reduced risk.  This is logical since program 

uncertainty (risk) equates to greater variation in cost estimates, and as uncertainty is 

reduced, cost estimates (accuracy) improve.  Thus, it follows that cost growth increases 

as the baseline used to measure cost growth moves back time (Hough, 1992: 10-11).  For 
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our research, we are concerned only with the cost growth in RDT&E accounts during 

EMD.  Thus, we choose to use only programs with a DE baseline estimate to capture the 

cost growth during the entire EMD phase.  (See Figure 1 in chapter II for a reference of 

the acquisition timeline.) 

According to RAND, cost growth is defined as “the difference between the most 

recent or final estimate of the total acquisition cost for a program and the initial estimate” 

(Hough, 1992:10).  The first or initial estimate can be a PE, DE, or PdE depending on the 

program.  Our research uses only programs with a DE baseline estimate as the initial 

estimate since we focus on cost growth in the EMD phase.  We compute cost growth as a 

percentage (this is explained in more detail later in this chapter) cost growth by first 

calculating the difference of the current estimate minus the DE.  We then divide the result 

by the DE.  Fortunately, the SAR data contains all the necessary information to make 

these calculations and supports our methodologies. 

SAR Limitations 

Although the SAR is the primary source of research into cost growth, its use is not 

without limitations.  In the 1992 RAND report by Paul Hough, he notes that while the 

government has implemented many reporting changes that continually improve the 

“quality and comprehensiveness of the data,” the SAR still possesses numerous 

difficulties with respect to cost growth calculations.  According to RAND, these 

problems include: 

• Failure of some programs to use a consistent baseline cost estimate 

• Exclusion of some significant elements of cost 
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• Exclusion of certain classes of major programs (e.g., special access 
programs) 

 
• Constantly changing preparation guidelines 

• Inconsistent interpretation of preparation guidelines across programs 

• Unknown and variable funding levels for program risk 

• Cost sharing in joint programs 

• Reporting of effects of cost changes rather than their root causes (Hough, 
1992:v; Sipple, 2002:49) 

 
Most literature agrees that the SAR provides some consistency in the reporting of 

program data, however, interpretations of the specific reporting guidelines vary from 

program to program, which increases inconsistency of reporting.  Additionally, the 

specific reporting guidelines themselves change over time, further adding to the 

inconsistency of the data (Hough, 1992:4).  Notwithstanding the noted data limitations, 

RAND recognizes the SAR as “the logical source of data for calculating cost growth on 

major procurements” (Hough, 1992:9).  Thus, our study follows RAND’s lead and adopts 

the SAR as our source of program data from which to estimate cost growth.   

The Baseline Problem 

Once a cost growth baseline is selected the analyst must recognize that the 

“selected” baseline may not be consistent over time or from program to program.  This 

inconsistency stems from two types of events: rebaselining and evolutionary changes.  

Rebaselining occurs when the program office develops a new baseline estimate in the 

middle of an acquisition phase.  The new program estimate replaces the old estimate; yet, 

it retains the original estimate’s designation (PE, DE, or PdE).  Evolutionary model 
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changes occur when modifications are made to a program such that the “current model 

only remotely resemble what was originally estimated” (Hough, 1992:12-14).  Detecting 

either a rebaselined or evolutionary changed program from a non-changed program is 

difficult at best and extremely hard to normalize out of SAR data (Hough, 1992:12-14).   

Variation of Reported Program Costs 

Congress continuously changes the SAR preparation guidelines in an effort to 

improve quality.  While these changes usually have no direct monetary impact on the 

program, they do present problems of accuracy and consistency for the cost growth 

analyst.  Variation in reporting requirements makes accurate calculation of cost growth 

difficult (Hough, 1992:12-47).  Moreover, RAND describes the practice of postponing 

the reporting of cost growth as a more systemic problem.  Postponement occurs when 

program managers do not report cost growth until after a significant milestone decision 

has passed, presumably to appear “lower” cost.  Thus, cost growth is erroneously 

allocated to the incorrect program phase, further exploiting the difficulty in accurate cost 

growth analysis.   

Inconsistency in SAR Preparation Guidelines and Techniques 

Closely associated with the problems of changing reporting requirements is the 

problem of inconsistent application of these changes.  While changes arguably improve 

the overall SAR content quality, the consistency and uniformity of the data is tainted over 

time.  Such fluctuations in the database make program comparisons difficult.  Magnifying 

this problem is that not all organizations interpret and adopt changes at the same time.  

RAND acknowledges that, “after a major change, consistency among SARs is not 
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ensured until all programs with current reporting use the same set of rules” (Hough, 

1992:19-20).  

Incomplete Database 

According to Hough, when analyzing cost growth, care should be taken to ensure 

the sample size of data used is representative of the overall population and that “...quality 

studies on cost growth should identify what portion of the total [SAR] population is 

included and why the sample is representative of the whole or is satisfactory for meeting 

the study objectives.”  Unfortunately, the SAR database is incomplete to start with, since 

it does not include lower dollar value (below ACAT 1D) DoD programs, or “highly 

sensitive – classified” or “black” programs (Hough, 1992:17).  According to the SAR 

instructions, any programs deemed by the Secretary of Defense to be “highly sensitive – 

classified” are exempt from SAR reporting.  By some estimates, the percentage of 

“black” programs represents, at least, 20 percent of the DoD acquisition budget (Hough, 

1992:17).  Thus, SAR based cost growth research includes only a portion of the total 

DoD pool of acquisition programs in existence.   

Unknown Funding Levels for Programs 

Maintaining key program funding with a declining DoD budget, makes program 

funding less stable.  As a result, Congress and the services often take money from one 

program to fund another.  To counteract this, program managers and cost estimators often 

include a cushion or monetary padding to account for this risk in their estimates.  This 

cushion, known officially as management reserve funding, is often hidden among one or 
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more budget line items.  Thus, the SAR may already reflect some estimate for risk, 

however, identifying these risk dollars is virtually impossible.  

Joint Programs 

Some major weapons programs are developed and used by more than one service 

component.  This leads to uniformity problems within the SAR.  In joint programs, 

investment costs can be equally distributed among all the participants, borne entirely by 

one component, or allocated on some other percentage distribution.  No guidelines exist 

to govern such programs or allocations.  Consequently, no single methodology is used 

within the SAR database, which further adds to the inconsistency of the database.   

Reporting Effects of Cost Changes Rather Than Root Causes 

RAND recognizes that current SAR requirements do not disclose the “root 

causes” of cost growth.  The SAR reports seven different categories of cost variance for 

each program but does not specifically report on what actually drives a program’s cost.  

Although a thorough review of other SAR sections might give an indication of the “root 

cause” of cost growth, there is no guarantee of this happening.  Hence, this limitation 

hampers the cost analyst’s quest for the true drivers of cost growth (Hough, 1992:23). 

Although, RAND openly acknowledges the many limitations of the SAR 

database, these limitations do not deter its use for analyzing cost growth.  A SAR 

database has many advantages including: strict reporting format (which improves 

consistency of the data), annual SAR training for those submitting SAR reports (which 

also improves consistency of the data (Knoche, 2002:2.B.3.2)), and increased scrutiny of 

data (because SARs go before Congress, the data is more reliable).  Thus, we 
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acknowledge that all sources of cost growth data contain some reporting, format, or other 

inaccuracies however; SAR data has its benefits and is widely recognized as the best 

option available for cost growth analysis.  Hence, we adopt the SAR as our database for 

this research study.    

Data Collection 

Since our research seeks to build upon Sipple’s (2002) work, we start with his 

established SAR database.  Sipple’s database includes RDT&E and procurement program 

data collected from SAR reports of programs that use the DE as its baseline estimate 

(Sipple, 2002:57).  Sipple systematically collected individual program data beginning 

with the December 2000 SAR and worked backwards in time to 1990, collecting 

sufficient data to support a statistically significant regression.  Furthermore, only one 

SAR for each program (the latest) was included to ensure independence of the data points 

(Sipple, 2002:57).  In many instances, he notes that the most recent DE based SAR for a 

program is the last SAR of the EMD phase of acquisition for that program, or it may be 

the last reported SAR due to program completion or termination.  As discussed earlier, he 

excludes those SAR programs that contain sensitive information or which are restricted 

with a security classification.   

We start our data collection with a thorough review of the most recently released 

SAR, specifically December 2001.  This SAR represents the next successive SAR from 

where Sipple ends his data collection.  Inclusion of this SAR information extends our 

research database to include RTD&E and procurement programs using a DE estimate and 

having an EMD phase of development from 1990 to 2001.  
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We begin by updating the current estimates of any programs presently included in 

our database.  That is, we ensure our database of SAR programs utilizes the most recently 

available program data.  We then add the programmatic data of any new programs, which 

meet our research criteria of RDT&E programs using a DE as their baseline estimate that 

are not currently included in the database.  We include all programs that meet this 

criterion.  We do not exclude joint service programs simply because of the previously 

identified inconsistency in reporting investment allocation costs between multiple 

program beneficiaries.  Further, to maintain consistenty with Sipple’s (2002) work we do 

not collect or use classified SAR program data.  Lastly, the specific type of program data 

we extract from the SAR mirrors Sipple’s original methodology, except that we use this 

information in predicting cost growth in four separate SAR categories (Estimating, 

Schedule, Support and Other) versus a single area. 

Exploratory Data Analysis 

Sipple (2002) found the data used for analysis possessed a mixture distribution.  

Consequently, we also encounter a mixture distribution within our data set.  A mixture 

distribution refers to a response variable whose data comprises of continuous and discrete 

data.  For our study, the discrete data centers at zero, i.e., no cost growth.  Using 

statistical analysis methods, the general solution to a mixture distribution calls for 

splitting the data into two separate sets, one for continuous and the other for discrete data.  

This is required because the probability of obtaining a specific number within a 

continuous distribution is zero, which no longer holds for a discrete mass.   
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The mixture distribution dictates that we use a two-step methodology in order to 

analyze using statistical methods.  The first step, utilizes logistic regression to analyze the 

discrete data.  The second step, utilizes multiple regression to analyze the continuous 

data.  Hence, we develop two types of models for our research objective.  Model A, for 

logistic regression to predict whether or not a program will have cost growth from the full 

data set, and model B for multiple regression to predict the amount of cost growth from 

only those programs that experience cost growth (Sipple, 2002:58-59).   

Upon further evaluation of the data, we also observe that several programs have 

negative SAR cost variances.  We speculate that negative values normally do not occur 

since a cost estimator would never assign such a value to cost estimate.  However, for our 

logistic regression model we consider all values, negative or positive.  To do this, we 

simply convert all negative cost growth figures to zero for inclusion in our logistic 

regression model.   

Finally, before starting the actual analysis of our data we set aside 20 percent of 

our data for validation purposes.  We sequentially input all the program data (# 1-122) 

into our statistical software program JMP® 4.0 (SAS Institute, 2001), and then utilize the 

random shuffle feature within JMP® to independently randomize the data.  We then 

remove the top 25 rows of randomized data, which corresponds to 20 percent of the entire 

database, for use in validating our models later.  We do not use this data during the model 

building process.   
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Response Variables 

Our research focus is to locate predictors of cost growth due to Estimating, 

Schedule, Support, and Other changes within the RDT&E accounts.  The SAR report 

identifies these categories as cost variances for both the RDT&E and the procurement 

appropriations.  However, we limit our focus to only the RDT&E accounts only.  Since 

we have a mixture distribution, we use two different response variables.  One variable 

indicates if cost growth will occur while the second variable conveys the magnitude of 

cost growth.  We express the first variable as a binary variable where a ‘1’ means that we 

estimate a program will experience cost growth, while a ‘0’ means it will not.  We call 

this variable R&D Cost Growth? (Sipple, 2002:60).   

We choose the second variable to have the form of a percentage, rather than a 

dollar amount to apply equally to both large and small programs.  We prefer the 

percentage-based variable to the dollar-based variable since it eliminates the need to 

quantify between programs of different sizes.  In essence, it equalizes programs of 

different sizes for comparison purposes.  Thus, we focus on predicting the percentage 

change in RDT&E cost growth due to Schedule, Estimating, Support, and Other changes 

in our models.  We call the response variables: Schedule %, Estimating%, Support% and 

Other%.  

Predictor Variables 

Our research uses the pool of candidate variables amassed by Sipple (2002).  The 

variables, all derived from literature review sources, are proven predictors of cost growth.  
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Thus, we use these predictor variables in our quest to build a tool for cost estimators that 

accurately predicts EMD cost growth for RDT&E accounts.   

Sipple groups the predictor variables into five broad categories:  program size, 

physical type of program, management characteristics, schedule characteristics, and other 

characteristics.  Within these broad categories, he also creates several subcategories 

levels to further group similar variables.  For example, the physical type category is 

further divided into ‘domain of operation variables’ and ‘functional variables’ (Sipple, 

2002:61).  We modify one predictor from Sipple’s original definition and rename it: New 

Concurrency Measure % to reflect a computational change.  Listed below are the 

predictor variables sorted by category and subcategories.  Short descriptions are provided 

for clarity: 

Program Size Variables 
• Total Cost CY $M 2002 – continuous variable which indicates the total cost of the 

program in CY $M 2002 
• Total Quantity – continuous variable which indicates the total quantity of the 

program at the time of the SAR date;  if no quantity is specified, we assume a 
quantity of one (or another appropriate number) unless the program was 
terminated 

• Prog Acq Unit Cost – continuous variable that equals the quotient of the total cost 
and total quantity variables above 

• Qty during PE – continuous variable that indicates the quantity that was estimated 
in the Planning Estimate 

• Qty planned for R&D$ – continuous variable which indicates the quantity in the 
baseline estimate 

 

Physical Type of Program 
• Domain of Operation Variables 

o Air – binary variable:  1 for yes and 0 for no; includes programs that 
primarily operate in the air;  includes air-launched tactical missiles and 
strategic ground-launched or ship-launched missiles 

o Land – binary variable:  1 for yes and 0 for no; includes tactical ground-
launched missiles; does not include strategic ground-launched missiles 
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o Space – binary variable:  1 for yes and 0 for no; includes satellite 
programs and launch vehicle programs 

o Sea – binary variable:  1 for yes and 0 for no; includes ships and ship-
borne systems other than aircraft and strategic missiles 

• Function Variables 
o Electronic – binary variable:  1 for yes and 0 for no; includes all computer 

programs, communication programs, electronic warfare programs that do 
not fit into the other categories 

o Helo – binary variable:  1 for yes and 0 for no; helicopters; includes V-22 
Osprey 

o Missile – binary variable:  1 for yes and 0 for no; includes all missiles 
o Aircraft – binary variable:  1 for yes and 0 for no; does not include 

helicopters  
o Munition – binary variable:  1 for yes and 0 for no 
o Land Vehicle – binary variable:  1 for yes and 0 for no 
o Ship – binary variable:  1 for yes and 0 for no; includes all watercraft 
o Other – binary variable:  1 for yes and 0 for no; any program that does not 

fit into one of the other function variables 
 

Management Characteristics 
• Military Service Management 

o Svs > 1 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

o Svs > 2 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

o Svs > 3 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

o Service = Navy Only – binary variable:  1 for yes and 0 for no 
o Service = Joint – binary variable:  1 for yes and 0 for no 
o Service = Army Only – binary variable:  1 for yes and 0 for no 
o Service = AF Only – binary variable:  1 for yes and 0 for no 
o Lead Svc = Army – binary variable:  1 for yes and 0 for no 
o Lead Svc = Navy – binary variable:  1 for yes and 0 for no 
o Lead Svc = DoD – binary variable:  1 for yes and 0 for no 
o Lead Svc = AF – binary variable:  1 for yes and 0 for no 
o AF Involvement – binary variable:  1 for yes and 0 for no 
o N Involvement – binary variable:  1 for yes and 0 for no 
o MC Involvement – binary variable:  1 for yes and 0 for no 
o AR Involvement – binary variable:  1 for yes and 0 for no 

• Contractor Characteristics 
o Lockheed-Martin – binary variable:  1 for yes and 0 for no 
o Northrup Grumman – binary variable:  1 for yes and 0 for no 
o Boeing – binary variable:  1 for yes and 0 for no 
o Raytheon – binary variable:  1 for yes and 0 for no 
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o Litton – binary variable:  1 for yes and 0 for no 
o General Dynamics – binary variable:  1 for yes and 0 for no 
o No Major Defense KTR – binary variable:  1 for yes and 0 for no; a 

program that does not use one of the contractors mentioned immediately 
above = 1 

o More than 1 Major Defense KTR – binary variable:  1 for yes and 0 for no; 
a program that includes more than one of the contractors listed above = 1 

o Fixed-Price EMD Contract – binary variable:  1 for yes and 0 for no 
 

Schedule Characteristics 
• RDT&E and Procurement Maturity Measures  

o Maturity (Funding Yrs complete) – continuous variable which indicates 
the total number of years completed for which the program had RDT&E 
or procurement funding budgeted 

o Funding YR Total Program Length – continuous variable which indicates 
the total number of years for which the program has either RDT&E 
funding or procurement funding budgeted 

o Funding Yrs of R&D Completed – continuous variable which indicates the 
number of years completed for which the program had RDT&E funding 
budgeted 

o Funding Yrs of Prod Completed – continuous variable which indicates the 
number of years completed for which the program had procurement 
funding budgeted 

o Length of Prod in Funding Yrs – continuous variable which indicates the 
number of years for which the program has procurement funding budgeted 

o Length of R&D in Funding Yrs – continuous variable which indicates the 
number of years for which the program has RDT&E funding budgeted 

o R&D Funding Yr Maturity % – continuous variable which equals Funding 
Yrs of R&D Completed divided by Length of R&D in Funding Yrs 

o Proc Funding Yr Maturity % – continuous variable which equals Funding 
Yrs of R&D Completed divided by Length of Prod in Funding Yrs 

o Total Funding Yr Maturity % – continuous variable which equals Maturity 
(Funding Yrs complete) divided by Funding YR Total Program Length 

• EMD Maturity Measures  
o Maturity from MS II  in mos – continuous variable calculated by 

subtracting the earliest MS II date indicated from the date of the SAR 
o Actual Length of EMD (MS III-MS II in mos) – continuous variable 

calculated by subtracting the earliest MS II date from the latest MS III 
date indicated 

o MS III-based Maturity of EMD % – continuous variable calculated by 
dividing Maturity from MS II in mos by Actual Length of EMD (MS III-
MS II in mos) 

o Actual Length of EMD using IOC-MS II in mos – continuous variable 
calculated by subtracting the earliest MS II date from the IOC date  



 

39 

o IOC-based Maturity of EMD % – continuous variable calculated by 
dividing Maturity from MS II in mos by Actual Length of EMD using IOC-
MS II in mos 

o Actual Length of EMD using FUE-MS II in mos – continuous variable 
calculated by subtracting the earliest MS II date from the FUE date  

o FUE-based Maturity of EMD % – continuous variable calculated by 
dividing Maturity from MS II in mos by Actual Length of EMD using 
FUE-MS II in mos 

• Concurrency Indicators 
o MS III Complete – binary variable:  1 for yes and 0 for no 
o Proc Started based on Funding Yrs – binary variable:  1 for yes and 0 for 

no; if procurement funding is budgeted in the year of the SAR or before, 
then = 1 

o Proc Funding before MS III – binary variable:  1 for yes and 0 for no 
o Concurrency Measure Interval – continuous variable which measures the 

amount of testing still occurring during the production phase in months; 
actual IOT&E completion minus MS IIIA (Jarvaise, 1996:26) 

o New Concurrency Measure % – continuous variable which measures the 
percent of testing still occurring during the production phase; (MS IIIA 
minus actual IOT&E completion in moths) divided by (actual minus 
planned IOT&E dates) (Jarvaise, 1996:26) 

 

Other Characteristics 
• # Product Variants in this SAR – continuous variable which indicates the number 

of versions included in the EMD effort that the current SAR addresses  
• Class – S – binary variable:  1 for yes and 0 for no; security classification Secret 
• Class – C – binary variable:  1 for yes and 0 for no; security classification 

Confidential 
• Class – U – binary variable:  1 for yes and 0 for no;  security classification 

Unclassified 
• Class at Least S – binary variable:  1 for yes and 0 for no; security classification is 

Secret or higher 
• Risk Mitigation – binary variable:  1 for yes and 0 for no; indicates whether there 

was a version previous to SAR or significant pre-EMD activities 
• Versions Previous to SAR – binary variable:  1 for yes and 0 for no; indicates 

whether there was a significant, relevant effort prior to the DE; a pre-EMD 
prototype or a previous version of the system would apply 

• Modification – binary variable:  1 for yes and 0 for no; indicates whether the 
program is a modification of a previous program 

• Prototype – binary variable:  1 for yes and 0 for no; indicates whether the 
program had a prototyping effort 

• Dem/Val Prototype – binary variable:  1 for yes and 0 for no; indicates whether 
the prototyping effort occurred in the PDRR phase 
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• EMD Prototype – binary variable:  1 for yes and 0 for no; indicates whether the 
prototyping effort occurred in the EMD phase 

• Did it have a PE – binary variable:  1 for yes and 0 for no; indicates whether the 
program had a Planning Estimate 

• Significant pre-EMD activity immediately prior to current version – binary 
variable:  1 for yes and 0 for no; indicates whether the program had activities in 
the schedule at least six months prior to MSII decision 

• Did it have a MS I – binary variable:  1 for yes and 0 for no 
• Terminated – binary variable:  1 for yes and 0 for no; indicates if the program was 

terminated 
 

Sipple’s initial investigation of the predictor variables reveals that further 

consolidation of the contractor variables is necessary in order to produce statistically 

relevant results (Sipple, 2002:65).  This stems from the reality that, in the current form, 

our data lists 45 different individual contractors.  This leads to a small number of repeat 

uses among our programs and produces statistically insignificant results.  Sipple 

overcomes this problem through use of a consolidation matrix, which captures the 1990s 

cooperate mergers within the industry.  See Sipple’s (2002) thesis for more information 

on this topic.  Table 4 shows the new category of contractor variables we use for our 

analysis.   

Table 4 - Consolidated Contractors (Sipple, 2002:67) 

New List of Contractor Variables 
Lockheed-Martin 

Northrop Grumman 
Boeing 

Raytheon 
Litton 

General Dynamics 
No Major Defense Contractor 

More than 1 Major Defense Contractor 
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Sipple develops the maturity variables using the earliest MS II date and the latest 

MS III date available to compute EMD maturity values that capture the entire EMD 

phase.  This procedure also avoids confusion when multiple MSII and MSII dates are 

listed for a program.  Sipple goes on to describe scarcity problems with certain variables.  

Specifically, he finds a shortage of usable data points in the EMD maturity variables 

which use Initial Operational Capability (IOC) or First Unit Equipped (FUE) dates for 

computation, the Concurrency Measure Interval, and the Concurrency Measure % (both 

derived from RAND).  Ultimately, the small number of usable data points limits 

amalgamation of these variables in models.  

Preliminary analysis of our data indicates similar scarcity problems.  Starting with 

an initial set of 97 data points, we find that IOC-based maturity variables shrink by 24 

data points to 73 usable data points, and more critically, the FUE – based Maturity of 

EMD % and RAND Concurrency Measure % reduce to 38 and 39 respectively.  Thus, we 

also recognize the limits of these variables as possible predictors of cost growth due to 

the shortage of usable data points.      

Logistic Regression 

As mentioned earlier in this chapter, we build two types of models to accurately 

predict cost growth.  The first model is a logistic regression model.  Logistic regression is 

a special type of regression that predicts a binary or dichotomous response, coded as '0' 

and '1' (Neter, 1996:567).  Figure 3 gives an example of a logistic response function with 

the dependent variable R&D (Schedule) Cost Growth and independent variable Maturity 

(Funding Yrs complete).  From the graph, we interpret the probability of cost growth 
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decreases as maturity lengthens.  We also surmise there is approximately 62.5 percent 

probability of zero cost growth at a maturity of 10 funding years.   
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Figure 3 - Logistic Regression Function (JMP Output) 

The logistic response function is always constrained by the maximum output 

values of ‘0’ and ‘1’.  In our case, we search for answers to the question will our program 

have cost growth or not (yes/no) for each of the SAR cost growth categories under 

review.  In preparation for using logistic regression we add a column to our database 

which we code a program '1' if it has cost growth (yes) and '0' if it has either zero or 

negative cost growth (no).  Since we now have a distribution of 1’s and 0’s, we 

characterize the data as a Bernoulli random variable with probability p of success 

(success=1) (Neter, 1996:568). 

The JMP® online help manual further explains the logistic regression process as: 

“…the probability of choosing one of the response levels as a smooth function of 
the factor. The fitted probabilities must be between 0 and 1, and must sum to 1 
across the response levels for a given factor value.  In a logistic probability plot, 

Probability 
of Yes 

Probability 
of No 
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the y-axis represents probability.  For k response levels, k - 1 smooth curves 
partition the total probability (=1) among the response levels.  The fitting 
principle for a logistic regression minimizes the sum of the negative logarithms of 
the probabilities fitted to the response events that occur–that is, maximum 
likelihood” (JMP 5.0, 2002:Help).   
 

Thus, the logistic regression function uses our categorical data to estimate the 

parameters of a model based upon the “best fit” of the input values.  (For more details see 

Sipple (2002, 68-71)).  We use JMP 4.0 (SAS Institute, 2001) software to accomplish 

the logistic regression and to build models for estimating whether or not a program will 

have cost growth. 

Since JMP has no automatic method, equivalent to stepwise regression, for 

logistic regression, we manually compute thousands of individual regressions, recording 

our results on spreadsheets.  To narrow our search from the approximately 2.6 billion 

regressions that stem from our 78 predictor variables we observe the following 

procedure.  We investigate all one-variable models for all our candidate variables and 

record the results.  Then we select the nine best models to carry forward for regression 

using all combinations of two-variable models and record the results.  We then select the 

eight best two-variable models to carry forward for regression using all combinations of 

three-variable models and record the results.  We continue this process, eventually 

whittling down to the best, most statistically significant, combinations of variables from 

our pool of predictors.  Hence, we call this process the “Darwinist” approach to model 

development.  We stop when we reach a model for which the gain of adding another 

variable does not warrant the additional complexity of another variable.  We find several 
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candidate models for each number of predictors and then narrow down to the best one for 

each number of predictors (Sipple, 2002:70-71). 

Multiple Regression 

The second type model we build to predict cost growth uses multiple regression.  

As with logistic regression, we use JMP for the multiple regression analysis.  We also 

utilize the same regression reduction methodology employed during logistic regression to 

narrow our focus of possible predictor variables.  That is we use our Darwinist approach 

for initial model selection but we also utilize stepwise regression as a backup check to 

ensure that we have not missed any statistically significant predictor variables from our 

candidate pool.  

Similar to our logistic regression process we find several statistically relevant 

models exist for each combination of predictors.  In each case, we continue model 

development until we breach our performance measurement of approximately one 

variable for every ten data points.  Using such an approach ensures we do not over-fit the 

model (Neter, 1996:437).     

Ultimately, we seek to construct eight different regression models, which we 

introduce in this paragraph and expand on in the next chapter.  We develop four logistic 

regression models (one for each SAR cost growth category under analysis) for use with 

our entire database.  These models predict whether a program will have RDT&E cost 

growth.  To simplify our analysis, we call these A models.  We then build four multiple 

regression models (again, one for each SAR cost growth category under analysis) for use 

with only those programs which experience cost growth.  We call these B models, from 
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which we predict the amount (percent) cost growth the will occur given there is cost 

growth (from step one).  We also apply a log transformation to the response variables in 

all B model’s, in order to correct for heteroskedasticity in the residual plot based on 

Sipple’s (2002) experiences and our own test regressions.     

Chapter Summary 

This chapter describes the overall research methodology employed during this 

endeavor.  We investigate our source of DoD program information, the SAR database, 

and describe many of its limitations, as well as some of its benefits.  We then discuss our 

data collection process, and explain our pool of candidate variables.  Lastly, we explain 

the requirement for, and use of, the combination of logistic and multiple regression in our 

research study.  We present the results of our analysis in the next chapter. 
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IV.  Results and Discussion 

 

Chapter Overview 

This chapter describes the findings and results of our logistic and multiple 

regression analysis.  We further describe our models and the criteria used to select the 

final models from the enormous range of possible models.  We also analyze the models 

for statistical validity and applicable use to cost estimators in the field.  We intend to 

conduct analysis using both logistic (A) and multiple regression (B) analysis for each of 

our four SAR cost growth categories under investigation: Schedule, Estimating, Other 

and Support.  However, as shown later in this chapter, two of the SAR categories – Other 

and Support have low occurrences of cost growth and do not support meaningful 

statistical analysis.   

Since we eliminate two of the four SAR categories from analysis, our study 

explores a total of four possible models – one logistic and one multiple regression model 

for each of the remaining SAR cost growth areas.  For identification purposes, we use the 

first letters of the SAR cost growth category in addition to the alphabetical identification 

(A / B) of the type of regression model and a numerical number (1- 9) to indicate the 

generation, or number, of variables associate with a given model.  For example, Sch-A3 

refers to a Schedule cost growth logistic regression model that has three variables, and 

Est-B1 refers to an Estimating cost growth multiple regression model that has one 

predictor variable.  
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Preliminary Data Analysis 

Our research objective seeks to reduce DoD weapons system cost growth through 

research into the causes of cost growth.  With this knowledge, we seek to develop a tool 

for cost estimators that can effectively estimate cost growth within a program based upon 

certain program characteristics.  As we describe earlier in this thesis, lower risk 

(uncertainty) equals lower cost growth.  We seek to reduce risk via more reliable cost 

estimates.   

The traditional methodology for building a cost growth estimate is with the use of 

Ordinary Least Squares (OLS) regression techniques.  A basic assumption of OLS 

regression is the underlying data distribution is continuous.  However, for our study, the 

response variable indicates this is not the case.  Instead, we find a mixture distribution – a 

discrete mass at zero and a continuous distribution elsewhere is present.  This situation 

necessitates that we split the data into two separate sets to accurately model the individual 

effects of both the discrete and continuous data components.  As demonstrated by Sipple 

(2002), a two-step cost growth model produces statistically equivalent results as a single-

step regression model however; the two-step model is statistically more reliable due to 

the validity of its underlying assumptions.  For these reasons, we adopt this two-step 

methodology.        

 The scope of our research is to fully develop the SAR cost growth categories of 

Schedule, Estimating, Support and Other.  We intentionally, omit the study of the 

Engineering category since it has been previously studied (Sipple 2002) and the 

Economic and Quantity categories, by convention, since these are normally excluded 

during cost growth analysis.  We focus only on programs in the SAR that have a DE 
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baseline during the period 1990 to 2001 and limit our analysis to only the RDT&E 

appropriation (3600).   

Stem and leaf plots of the four cost growth areas under analysis indicate a mixture 

distribution is present in each category (see Figure 4) and confirms the need for a two-

step analytical approach.  The mixture distribution is clearly visible by the multiple 

occurrences of zeros (or no cost growth) centered on zero in the plots.  For clarity, we 

mention that our research treats the negative occurrences of cost growth on these plots as 

“zero” cost growth in our logistic regression model building and analysis.  We observe 

that the Schedule and Estimating plots appear to have sufficient data to support a 

meaningful statistical analysis.  However, the Other and Support plots appear far less-

populated indicating possible small sample populations.  We further investigate this 

possibility, and discover the Other category has only four occurrences of cost growth and 

the Support category fifteen occurrences (Figure 5).  This lack of data points renders 

these two areas useless for meaningful statistical regression therefore we limit further 

analysis of these two areas to descriptive measures only.  
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Figure 4 - Stem and Leaf Plots of Y Variables (stem in 10’s, leaf in 100’s)  

Analysis of the Other cost growth category reveals the four programs that exhibit 

cost growth are: B-1B CMUP-Computer, F/A -18 C/D, E-6A TACAMO, and PATRIOT 

(MIM-104).  We find that all four programs exhibit several similar characteristics: all 
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have “Estimating” cost growth, domain of operation is “Air”, and prototyping or other 

significant pre-EMD activity occurred in their development.   
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Figure 5 - Frequency Plot of Other and Support Cost Growth  

  From this information, we gain possible insight into what causes “Other” cost 

growth but stop short of drawing conclusions based on four programs.  We conduct 

identical analysis for the Support cost growth area but find no commonality between the 

fifteen programs, which comprise this category.  Thus, our analysis of these two SAR 

cost growth area concludes but we continue on with the Schedule and Estimating 

categories.    

A further visual inspection of the 78 candidate variable plots reveals the existence 

of two “outliers” in the New Concurrency Measure % variable.  We must note that our 

use of the term “outlier” in this instance does not refer to the normal statistical definition 

of outlier because we are dealing with binary responses and hence do not have customary 

residual diagnostics to describe the residuals.  Thus, we use the term to simply describe 

data points that can unduly influence the relevance of a variable for model inclusion.   
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As Figure 6 shows, these data points are significantly separated from the majority 

of data points.  We investigate the effect of these data points on some test models and 

notice that the test model’s R2 (U) changes from 0.3703 to 0.4808 and the p-values of the 

individual parameters in the model significantly change when the data points are 

excluded (Figure 7).  Since we witness such a fluctuation from the removal of these 

points, we determine these data points are “influential outliers” and we exclude them 

from all further logistic regression analysis.  Hence, we continue our analysis and model 

building efforts using the only the Schedule and Estimating categories, and exclude two 

data points from further model A development.  We begin our analysis with the logistic 

regression models (A) and then move to multiple regression models (B).    
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Figure 6 - Overlay Plot of New Concurrency Measure  
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Figure 7 - Logistic Regression Models With and Without Influential Data Points 

Logistic Regression Results – Model A 

As we discuss in chapter III, we face a staggering manual task of finding the 

“best” cost growth model from an estimated 2.6 billion possible combinations of models, 

which originate from our 78 candidate predictor variables.  Until recently, our statistical 

software package, JMP4.0, offered no automated stepwise-type function for logistic 

regression to help reduce this task, so we pursued a manual Darwinist approach in 

selecting our candidate variable models.  This methodology selects only the strongest, 

most statistically significant, models to be carried forward for each successive generation 

of model building, and culminates with only those combinations of variables (models) 

surviving which have the most value in predicting cost growth.   

However, we discover the newly released JMP 5.0 offers the additional 

capability of step-wise for logistic regression.  Since we learn of this feature after our 

initial process has begun, we decide to test this feature to help us quickly obtain a 

significant predictive cost growth model.  We start by adding all 78 variables to the 

automated step-wise function and immediately find that we exceed the software’s 

capacity for the number of variables used at one time.  Next, we try multiple batches of 

smaller groups so that the automated model runs properly and adjust the sensitivity of the 
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stepwise model to mirror our manual criteria.  We record the ten “best” single variable 

models that step-wise identifies with the first generation of manual models we previously 

computed.  We find that stepwise does not compare favorably with our manual process.  

Out of our ten “best” first generation manual models, stepwise identifies only four of 

those same models.  Thus, stepwise fails to identify six of the most significant variables 

from our candidate pool.  We then test if stepwise will identify our “best” four variable 

manual model also previously computed.  We input the four variables along with 20 

additional variables into the stepwise model.  We find that stepwise does not identify the 

same four variables nor does it match the level of significance (R2 (U)) we obtain in our 

manual model.  Furthermore, the stepwise identified four variable model has a lower R2 

(U) than our manual generated four variable model.       

From this, we conclude that stepwise can save us significant computational time 

in reducing the number of variables we consider; however, the trade-off is that our final 

model will not be as significant as our manually generated model.  Thus, we choose to 

proceed with our initial manual process of model development.  We follow this strategy 

for both the Schedule and the Estimating cost growth models.  We commence with a 

single-variable model and progress to a nine-variable model for the Estimating model.    

We further elaborate on the Darwinist approach of our manual model building to 

give potential end-users an understanding of the magnitude and meticulous detail given to 

this process.  We begin by computing all one-variable models and recording the results 

on spreadsheets.  We select the best nine, one-variable models to carry forward.  We 

regress each of the nine best one-variable models against all 78-candidate predictor 

variables and record the results.  We then select the eight best two-variable models from 
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these results, and carry these forward for regression using all possible combinations of 

three-variable models.  We continue this process until the advantage of adding variables 

is outweighed by the additional complexity of another variable.  We repeat this process 

for both our Schedule and Estimating cost growth models, which culminates in   

approximately nine thousand regressions.  For each category of model, and at each 

generation, we scrutinize and compare several possible candidate models before selecting 

the best model.  Our final selection is based on the optimal mix of statistical measures 

listed in Table 5.  A discussion of these measures follows.   

Table 5 - Evaluation Measures for Model A 

Measure 
R2 (U) 
Number of Data Points / Ratio 
Area Under ROC 

 

Our first statistical measure for comparison of models is R2 (U).  The logistic 

regression R2 (U) is not the same as the R2 for ordinary least squares regression.  R2 (U) 

values range from zero “0” to “1”, and represents the proportion of the total uncertainty 

that is attributed to the defined model (JMP® 5.0, 2002: Help).  The OLS R2 refers to the 

amount of variance explained by the regression line, while the logistic regression R2 (U) 

is the proportion of variance explained by a dichotomous or categorical dependent 

variable (Garson, 2003:9).  Mathematically, our software, JMP 5.0 calculates the R2 (U) 

statistic as the difference of the negative log likelihood of the fitted model minus the 

negative log likelihood of the reduced model, divided by the negative log likelihood of 

the reduced model or simply (JMP® 5.0, 2002: Help):  
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- loglikelihood for Difference 
- loglikelihood for Reduced  

Thus, we consider R2 (U) as a measure of the amount of certainty explained by our 

model, and recognize that a higher R2 (U) indicates a better prediction model.  See Sipple 

(2002) for more information on this performance measure. 

The second measure we consider in evaluating models is the number of data 

points.  The number of data points available is critically important because the higher the 

number of data points, the more representative our sample is of our underlying 

population.  Thus, we favor models with the highest number of observations possible 

when making our model selections.  A further benefit of large observations is the ability 

to add more predictor variables to our models before the model becomes unstable.  A 

basic rule of thumb when selecting the number of variables for model inclusion is that a 

model should have at least six to ten data points for every predictor variable (Neter, 

1996:437).  For our research, we immediately exclude any model, which falls below the 

6:1 ratio, and cautiously evaluate those models with a ratio between 6:1 and 10:1.     

Next, we consider the area under the Receiver Operating Characteristic (ROC) 

curve as a discriminator between models.  The ROC curve is a graphical representation of 

the relationship between true-positives and false-positives.  The curve is a plot of 

sensitivity by (1 – sensitivity) for each value of X where, sensitivity is the probability that 

X correctly predicts the existing condition (true positive) and (1 – sensitivity) is the 

probability that X correctly predicts a condition that does not exist (false positive).  If a 

test was 100 percent accurate (true positive - sensitive), it would pass through the point 

(0,1) on the ROC grid (see Figure 8) (JMP 5.0, 2002:Help).  Thus, the closer the ROC 
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curve comes to this point, the higher its ability to predict.  Moreover, the larger the area 

under the ROC curve, the more accurate a model it is at predicting.   
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Figure 8 - Receiver Operator Characteristic Curve 

 
For our research, we interpret the ROC curve as the probability of correctly 

obtaining a true positive when the underlying question is true.  In our study, the 

underlying question is “does my program have cost growth?”  A true positive is obtained 

when a model correctly predicts cost growth in a program that actually has cost growth, 

and a false positive is obtained when the model predicts cost growth when there is none.  

We note that a false positive is not a “bad” prediction when referring to cost growth, 

although a true negative would be “bad” in terms of cost growth estimation.  Thus, when 

evaluating models by this criterion, we search for the model with the largest area under 

the ROC curve for each category of model, and within each generation of model, we 

evaluate.  See Sipple (2002) for more information on this performance measure.     
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Table 6 and Table 7 show the results of the Schedule cost growth A model 

development.  Our analysis uncovers two predominate families of models within this 

category, one which maintains a very high number of data points (95) and a second, 

which is considerably less overt (35 data points).  Yet, the smaller family model has a 

significantly higher R2 (U) and a larger area under the ROC curve than the larger family 

model, indicating more accuracy.  We discover the second family after three initial 

generations of models hence, the reason behind the empty cells in the second model.      

Table 6 - Schedule Model A - Performance Measures 

Schedule Cost Growth Logistic Regression Models (N=95)

#1 1 2 3 4 5 6
RSq (U) 0.1512 0.2016 0.2547 0.2835 0.3285 0.3463
# Observations 95 95 95 95 95 95
Area Under ROC 0.72452 0.78548 0.82429 0.83405 0.8569 0.8681
Incremental increase of R2 (U) 0.1512 0.0504 0.0531 0.0288 0.0450 0.0178
Incremental increase under ROC 0.72452 0.06096 0.03881 0.00976 0.02285 0.0112
Ratio:   # Obs to variables 95.0 47.5 31.7 23.8 19 15.8

Schedule Cost Growth Logistic Regression Models (N=35)

#2 1 2 3 4 5 6
RSq (U) 0.4808 0.4809 0.5982
# Observations 35 35 35
Area Under ROC 0.92000 0.92000 0.94333
Incremental increase of R2 (U) 0.4808 0.0001 0.1173
Incremental increase under ROC 0.92000 0.00000 0.02333
Ratio:  # Obs to variables * 8.75 * 7.0 ** 5.83
* Caution Zone
** Critical Zone

Number of Variables

Number of Variables

 

We recognize that the smaller quantity family (35) immediately breaches the 

cautionary zone for our ratio of data points to variables, yet we continue with our analysis 

for two more generations.  We progress from the fourth to the fifth generation of models 

because none of the performance criteria, for the large family (95) models, suggests we 

have exhausted the benefits of adding extra variables to the models.  However, we 
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observe that one of the large family variables (RAND Prototype) p-value exceeds 0.05 

(Table 7).   

Just as in OLS regression, the lower the p-value of the parameter estimate, the 

higher the statistical significance of that parameter in predicting the response variable.  

For our research, we desire a model with all p-values less than 0.05 so that our models 

are as effective as possible in estimating cost growth.  Yet, we are unable to consistently 

meet this desire throughout our Schedule cost growth model building process.  Thus, we 

ease this restriction to accept p-values of up to 0.1.   

Table 7 - Schedule Model A - Predictors 

Schedule Cost Growth Logistic Regression Models (N=95)

#1 1 2 3 4 5 6
Maturity (funding Yrs Complete) 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000
AR involvement 0.0158 0.0117 0.0112 0.0036 0.0028
Versions Previous to SAR 0.0133 0.0061 0.0036 0.0095
RAND Prototype * 0.0687 * 0.0773
Northrup Grumman 0.0246 0.0162
Significant pre-EMD activity ** 0.1072
EMD Prototype ** 0.1039

Schedule Cost Growth Logistic Regression Models (N=35)

#2 1 2 3 4 5 6
Maturity (funding Yrs Complete) 0.0218 0.0223 0.0359
Electronic 0.0163 0.0166 * 0.0570
New RAND Concurrency Measure% 0.0319 0.0322 ** 0.1066
Service = AF only 0.0249 0.0258
Aircraft ** 0.9793
Boeing 0.0435
Class S ** 0.1406
N involvement * 0.0630
* Caution Zone
** Critical Zone

Number of Predictors

Number of Predictors

 

The fifth generation small family is excluded from further consideration due to 

high p-values for the Aircraft variable.  We then proceed from the fifth to the sixth 

generation where we encounter multiple occurrences of high p-values for our parameter 
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estimates in both families of models.  Thus, we terminate our search after six generations.  

For validation, we exclude from consideration Sch #1– A6 (95), Sch #2– A5 (35) and Sch 

#2– A6 (35) because of p-value breaches.  Since there is such an extreme drop in the 

number of data points, and a large jump in R2 (U) between the two families we decide to 

carry both models forward to validation.  We follow this strategy to test the 

appropriateness of our selection criteria and overall methodology.  Hence, we carry 

forward from this area to validation, Sch #1– A5 and Sch #2– A4, as the most 

parsimonious and robust models (Appendix A and B).        

Table 8 and Table 9 show the results for the Estimating cost growth model A.  

Our development and analysis of the Estimating cost growth area continues relatively 

uneventful for nine generations of models.  During the sixth through the ninth generation, 

we encounter several models with high p-values, including one instance in which a 

model’s variable exceeds the 0.1 p-value criteria.  Specifically, we progress from the 

seventh to the eighth generation in search of a model with the highest measurement 

characteristics as possible, and because the majority of our performance measurement 

criteria are positive, we do not stop.  The eighth generation moves our ratio of data points 

to variables into the cautionary zone, and we find that one of our variables – Fixed Price 

EMD Contract exceeds our 0.1 p-value restriction.  We note the increasing benefit of 

adding this variable is slight, increasing our R2 (U) by only 0.0195, and the area under the 

ROC curve by 0.0098, but we investigate the possibility that an additional variable might 

reap greater improvements in our model’s measurements, so we proceed.   
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Table 8 - Estimating Model A - Performance Measures 

Estimating Cost Growth Logistic Regression Models 

#1 1 2 3 4 5 6 7 8 9
RSq (U) 0.1016 0.1680 0.2104 0.2470 0.3235 0.3912 0.4184 0.4379 0.4676
# Observations 95 95 95 95 88 88 88 86 86
Area Under ROC 0.70492 0.75747 0.79725 0.82956 0.86333 0.89389 0.89813 0.90792 0.91818
Incremental increase of R2 (U) 0.1016 0.0664 0.0424 0.0366 0.0765 0.0677 0.0272 0.0195 0.0297
Incremental increase under ROC 0.70492 0.05255 0.03978 0.03231 0.03377 0.03056 0.00424 0.0098 0.01026
Ratio:   # Obs to variables 95.0 47.5 31.7 23.8 17.6 14.7 12.6 * 10.8 * 9.6
* Caution Zone

Number of Variables

 

Table 9 - Estimating Model A – Predictors 

Estimating Cost Growth Logistic Regression Models 

#1 1 2 3 4 5 6 7 8 9
Length of R&D in Funding Yrs 0.0020 0.0007 0.0005 0.0005 0.0002 0.0001 0.0001 0.0001 0.0001
SVS>3 0.0078
Version Previous to SAR 0.0282 0.0328 0.0094 0.0134 0.0070 0.0044
N involve-ment? 0.0106 0.0026 0.0007 0.0007 0.0009 0.0010 0.0109
PE ? 0.0477 0.0070 0.0100 0.0071 0.0045 0.0031
RAND Lead Svc = DOD 0.0034 0.0038 0.0068 0.0090 0.0060
Did it have a MSI 0.0205 * 0.0914 0.0464 0.0421 * 0.0646
RAND Prototype * 0.0888 0.0491 0.0436
Fixed-Price EMD Contract ** 0.1268 * 0.0832
SVS>2 * 0.0908
* Caution Zone
** Critical Zone

Number of Predictors

 

At the ninth generation, we recognize an incremental improvement in R2 (U) of 

0.0297 and area under the ROC curve of 0.0102, both of which are higher than the 

contribution of the eight variable but is not the breakthrough we had hoped for.  We 

recognize at this juncture, that with nine variables our model is fairly complex, and that 

we have multiple variables with less than significant contributions to the model.  Thus, 

we deem the eighth and ninth generation models to be unacceptable since the benefit of 

adding the extra variables in terms of R2 (U) and area under the ROC curve is outweighed 

by the additional complexity from extra variables.  The multiple breaches to the 

significant p-value level of 0.05 further solidifies this decision.  Hence, we submit to 
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validation the Est – A7 model as our most robust model of the Estimating cost growth 

class (Appendix C).   

For validation, we utilize the previously selected 25 random data points set aside 

prior to model building.  The 25 data points constitute 20 percent of the original 122-

point data set.  The logistic regression validation process consists of regressing each 

specific model to be validated against the entire 122-point data set.  We then save the 

functionally predicted values (‘0’ or ‘1’) for each of the validation (25) data points and 

compare to the actual values.  JMP® computes the predicted values by assessing the 

probability of having cost growth based upon the factors in the specific model.  We use 

JMP®’s default settings, in which a ‘1’ is assigned to any point with a probability of 0.5 

or greater and a ‘0’ otherwise.  However, we note that these settings can be adjusted to 

allow the cost estimator greater flexibility in assessing cost growth.   

In the Schedule cost growth area, we use all 25 data points in validating model #1 

but are not as fortunate with model #2, where we lose 18 data points to missing values (or 

the absence of predictor variable characteristics in the validation set).  The culprit in this 

model is the New RAND Concurrency Measure % variable, which accounts for the loss 

of all 18 data points.  We are not surprised by this fact given that our preliminary analysis 

indicated that this variable had a shortage of usable data points.  The abundance of 

validation data points for model #1 substantiates our modeling criteria of maintaining the 

largest number of data points as possible – to better represent the underlying 

characteristics of the population.  Hence, model #1’s variables (characteristics) are 

present in all 25-validation points while model #2’s are present in only seven.   
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Upon validation, we find that model #1 accurately predicts 14 out of the 25 data 

points for a 56 percent success rate.  For model #2, we discover that it accurately predicts 

six out of seven data points for a success rate of 85.7 percent.  Since, the success rate of 

model #1 is only slightly better than flipping a coin for a 50/50 chance, we recognize 

model #2 and its enviable success rate as our best model for this category.  We surmise 

that although model #1’s characteristics are present in every validation point and model 

#2’s characteristics are less represented in the population, the improved accuracy of 

model # 2 stems from the higher performance measure statistics.  This confirms our 

model development criteria.  Thus, we submit Sch #2 –A4 as our best model for this 

category.  See Table 10 for a summary of all model A validation results and Appendix G 

for the complete validation analysis. 

In validating the Estimating cost growth area, we use 23 of the 25 data points (2 

data points are lost due to missing values).  We find that Est-A7, accurately predicts 18 of 

the 23 data points for a success rate of 78.2 percent.  We are pleased with these results 

since the model’s characteristics are both well represented in the validation population, 

and have good predictive capability, as evidenced by the reasonably high success rate.  

Thus, we are satisfied that Est – A7 is our best model in this category.  See Appendix A – 

C for whole model characteristics for all A models.       

Table 10 - Model A Validation Results 

Model

# Predicted 
Correct (Total)

% Accurate 
(Total)

Sch#1 - A5 14 56.00%
Sch#2 - A4 6 85.71%
Est#1 - A7 18 78.26%  
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Multiple Regression Results – Model B 

We continue our two-step methodology by constructing a model to estimate the 

amount of cost growth a program will incur when a decision maker knows that a program 

will have cost growth.  We start by returning to our randomly selected pool of 97 data 

points.  In each category of cost growth we study (Schedule and Estimating), we exclude 

programs that have zero or negative cost growth.  For the Schedule cost growth area this 

leaves us with 36 data points and for the Estimating category 63 data points.  Under the 

two-step methodology, using only the data points which contain positive cost growth 

should give the model more predictive capability, since there is less “noise” to distort and 

skew the results.   

In this section of analysis, we use the same pool of 78 predictor variables as in the 

logistic regression analysis however, our Y response variables change to Schedule % and 

Estimating % since we now seek to predict the amount of cost growth in a program.  

Each respective Y response variable is calculated as a percent increase of cost growth 

from the DE baseline estimate.  We begin by analyzing the Schedule cost growth area 

and then move to the Estimating cost growth area.    

An initial plot of the Schedule data indicates the Y response variable does not 

have a normal distribution.  We expect this fact since earlier work in this area by Sipple 

(2002) found the use of a natural log transformation helpful in accounting for distribution 

shape and to correct for heteroscedasticity in the residual plots.  We confirm the 

appropriateness of a natural log transformation on the Schedule Y response variable using 

JMP® (Figure 9).     
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However, we do not find as strong a log normal trend in the Estimating Y 

response variable as shown in Figure 10 by the low KSL (Kolmogorov-Smirnov-

Lilliefors) goodness of fit test result of 0.01 for the log normal fit (JMP, 2002:Help 

Index).  We investigate the possibility that a log transformed Estimating Y response might 

apply in this case since we have some knowledge of the benefits of its application in 

previous cost growth research.  Figure 10, shows the log transformed Estimating Y 

response does not pass the Shapiro-Wilk goodness of fit test at an alpha of 0.05; however, 

by visual inspection we see the distribution is reasonably normal.  Thus, we deem use of 

the log transformed Y response variable appropriate for use on both the Schedule and the 

Estimating cost growth areas. 

 

 

Figure 9 - Distribution of Schedule Y and Transformed Y 
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Figure 10 - Distribution of Estimating Y and Transformed Y  

We begin our multiple regression analysis with the Schedule cost growth 

category.  Since this area has only 36 usable data points, we constrain our search for 

predictive models to only those which contain a maximum of four variables, so that we 

do not critically exceed our model building benchmark ratio of 10:1 data points to 

variables.  Similarly, we follow the same Darwinist approach to model development that 

we used during logistic regression.   

We initialize the model building process by first, regressing all 78-candidate 

predictor variables against the Schedule Y response variable and record the results on 

spreadsheets.  We then select the top scoring one-variable models and regress against all 

combinations of two-variable models.  We again select the best models and regress 

against all combinations of three-variable models.  We continue this process, searching 

for the best combination of predictive ability and significant estimates until we breach 

-1
0
1
2
3
4
5
6
7
8
9

10
11
12

.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

 Normal(0.58449,1.55813)
 LogNormal(-1.6277,1.6315)

 Shapiro-Wilk W Test

  0.333445
W

  0.0000
Prob<W

Goodness-of-Fit Tes t
Fitted Normal

 KSL Test

  0.137782
D

  <  0.0100
Prob>D

Goodness-of-Fit Tes t
Fitted LogNormal

CG - Estimating

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

 Normal(-1.6277,1.6315)

 Shapiro-Wilk W Test

  0.935137
W

  0.0041
Prob<W

Goodness-of-Fit Tes t
Fitted Normal

LN ESTimating
Distributions



 

66 

one of the model development performance measurements listed in Table 11.  The 

criteria listed in Table 11 are similar to the criteria used for Logistic Regression except 

that our current focus is on adjusted R2 instead of R2 (U).   We find the use of adjusted 

R2, advantageous over regular R2, since it protects against artificial inflation of the R2 

value simply by adding additional variables to a model.   

Table 11 - Evaluation Measures for Model B 

Measure 
Adj R2  
Number of Data Points 
Ratio: Data Points to Variables 

 

Table 12 and Table 13 display the results of our Schedule cost growth B model 

development.  Our analysis progresses smoothly for two generations of model building.  

During the third generation, we again discover two predominate models one, which 

maintains all of its data points (36) – thus, has more prevalent population characteristics, 

and a second model which has a higher predictive ability, yet contains less prevalent 

characteristics (27).  We are concerned with the smaller model since it immediately 

reaches a cautionary zone over to its ratio of data points to variables.  Because one of its 

variables is borderline significant at 0.0523 we, however, do not eliminate the model 

from further evaluation.  We proceed to the next generation with two possible models for 

the Schedule cost growth area.  Upon further analysis in the fourth generation, we decide 

to keep the smaller model despite its aforementioned drawbacks due to its significantly 

higher adjusted R2 value compared to model #2.  Thus, we carry forward to validation 

two-candidate Schedule cost growth models (Appendix D and E).    
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Both of these candidate models pass the statistical assumption tests of normality 

and constant variance at an alpha = 0.05.  We assume independence since there is no 

obvious serial correlation and we have removed dependent programs from our data set.  

We further test the predictors for multicollinearity, by ensuring that all variance inflation 

factors (VIFs) are less than ten (Neter, 1996:387).  In fact, all our models VIF’s are 

below 2.0.   

Table 12 - Schedule Model B - Performance Measurement   

Schedule Cost Growth Multiple Regression Models (N=26)

#1 1 2 3 4
Adj RSq 0.2040 0.4047 0.6081 0.6805
# Observations 36 36 27 27
Incremental increase of R2 0.2040 0.2007 0.2035 0.0723
Ratio:   # Obs to variables 36.0 18.0 * 8.7 ** 6.8

Schedule Cost Growth Multiple Regression Models (N=35)

#2 1 2 3 4
Adj RSq (U) 0.5597 0.6190
# Observations 36 36
Incremental increase of R2 0.5597 0.0593
Ratio:  # Obs to variables 12.0 * 9.0
* Caution Zone
** Critical Zone

Number of Variables

Number of Variables

 



 

68 

Table 13 - Schedule Model B - Predictors   

Schedule Cost Growth Multiple Regression Models (N=26)

#1 1 2 3 4
Boeing 0.0033 0.0003 0.0002 <.0001
Land Vehicle 0.0012 0.0001 <.0001
RAND Concurrency Measure Interval * 0.0523 0.0171
Space 0.0208

Schedule Cost Growth Multiple Regression Models (N=35)

#2 1 2 3 4
Boeing 0.0033 0.0003 <.0001 <.0001
Land Vehicle 0.0012 <.0001 <.0001
RAND Lead Svs = Navy 0.0012 0.0015
Did it have a MS I ? 0.0204
* Caution Zone

Number of Predictors

Number of Predictors

 

Results from the Estimating cost growth B model development are presented in 

Table 14 and Table 15.  Analysis and model development in this area was by far the most 

in-depth and extensive out of all the cost growth models and areas we study.  From the 

onset of the second generation, we consider multiple-candidate “best” models and 

observe the effects on each as we progress through five generations of models.  

Unfortunately, at the conclusion of our model-building endeavor we disqualified all but 

one family of models for failure of statistical assumption tests.  Even in our surviving 

best model, we had to remove a data point during the assumptions testing process.  The 

one point we remove was above 0.5 on the Cook’s Distance test, indicating it was an 

influential outlier.  In explaining Cook’s Distance, Neter has this to say: if the percentile 

value is less than 10 – 20 percent, the case has little apparent influence on the fitted 

values, if the percentile value is 50 percent or more, the case has a major influence on the 

fitted regression (Neter, 1996:381).  Thus, to ensure the most reliable, accurate estimates 

as possible from our models, we are swayed to remove the data point.          
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Table 14 displays the results of the surviving family of Estimating models.  We 

notice that immediately we loose four data points in generation one, but maintain that 

level until the third generation.  The third generation sees a considerable drop in the 

number of data points to 45, but an increase of adjusted R2 to 0.323238.  With all the 

parameter estimates significant, we are encouraged by the possibility of a highly 

predictive model and progress to the forth generation.  We see an increase of .0312 to the 

Adj R2 from the addition of two variables: Risk Mitigation and RAND Lead Svc = Navy 

and the removal one: of General Dynamics.  Since all our measurement indicators are 

positive, and the model parameters continuing to show significance, we proceed to the 

next generation.   

Table 14 - Estimating Model B - Performance Measurements   

Estimating Cost Growth Multiple Regression Models 

1 2 3 4 5
Adj RSq 0.1330 0.2482 0.3232 0.3545 0.5225
# Observations 59 59 45 45 44
Incremental increase of R2 0.1330 0.1152 0.0751 0.0312 0.1680
Ratio:   # Obs to variables 59.0 29.5 15.0 11.3 * 8.8
* Caution Zone

Number of Variables

 

Table 15 - Estimating Model B - Predictors  

Estimating Cost Growth Multiple Regression Models 

1 2 3 4 5
Did it have a MS I? 0.0026 <.0001
Funding Yrs of R&D Completed 0.0029
IOC - Based Maturity of EMD % 0.0023 0.0013 <.0001
Proc Funding Yr Maturity % 0.0091 0.0096 <.0001
General Dynamics 0.0037 0.0016
Risk Mitigation 0.0014
RAND Lead Svc = Navy * 0.0530 0.0033
PE ? 0.0039
* Caution Zone

Number of Predictors
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In this generation we initially see an increase in adjusted R2 to 0.432103, maintain 

our 45 data points and notice all p-values are highly significant (all less than 0.01).  

However, at this level, with five variables we reach the cautionary zone of data points to 

variables, thus we cease further analysis.  As mentioned earlier in this section, when we 

check the statistical assumptions of this model we discover an extreme outlier, which we 

are obligated to remove.  Hence, reducing the total usable data points down by one.  

When we remove the point, the adjusted R2 increases to 0.522499 and the number of data 

points is 44 (as shown in Table 13).  Thus, we carry forward to validation the Est – B5 

model as the most robust model of the category (Appendix F).   

For multiple regression validation, we use the same 25-point validation data set, 

which we used for logistic regression validation.  The validation consists of combining 

the validation data set with our working data set, and saving the predicted values for each 

individual model to be validated.  JMP® computes the predicted value by fitting the 

specified model parameters with the values of the 25-point validation set.  We then 

calculate an 80 percent upper prediction bound, back-transform the log normal Y 

response to normal, and assess the accuracy of the model’s prediction capability.  We 

utilize an 80 percent upper prediction bound (PB) instead of the traditional 95 percent 

prediction interval based on Sipple’s (2002) work, in which, he finds that after back-

transforming the Y via the natural exponential function, 95 percent prediction intervals 

are impractically wide in some cases (Sipple, 2002:87).  Hence, the 80 percent attempts 

to narrow the scope of analysis and ultimately prove more useful to an end user.   We 

gauge the accuracy by comparing the actual percentage cost growth (Y response un-
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transformed) to the upper prediction bound.  A success is recorded when the prediction 

bound contains the actual value.     

For the Schedule category, 11 of the 25 validation data points have cost growth 

and the other 14 do not.  In the Estimating category, 15 of the 25 have cost growth and 10 

do not.  The percentage of cost growth present in each type cost growth is as follows: 

Schedule 44 percent and Estimating 60 percent.  These distributions seem rationale and 

representative in light of our working sample population where Schedule cost growth is 

36.8 percent (25/95) and Estimating cost growth is 64.2 percent (61/95).  Thus, we are 

unconcerned that every data point is not utilized in the validation step because it well 

represents the population.  In fact, if every data point was used (all contained cost 

growth) we would be more concerned since this situation would be abnormal.   

We begin by validating the Sch#1-B4 (N=27) model with the validation set.  We 

produce our estimates and 80 percent upper prediction bound, and notice that out of the 

11 possible programs, 5 have missing values, reducing our usable set to 6 data points.  Of 

these, we produce a prediction bound that accurately captures the true value 66.67 

percent of the time with two points falling outside the prediction bound.  This result is 

encouraging (greater that 50/50 chance) however, the small number of observations used 

to construct the model leaves us a bit uncertain about the widespread application of the 

model.  Table 16 lists the validation results.  

For Sch#2-B4 (N=36), we save the predicted values, calculate the prediction 

bound and find only one missing value (leaving 10 usable).  We evaluate and determine 

an 80 percent success rate with this model, and two data points outside the prediction 

range.  Such results are highly encouraging given the broader base from which this model 
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originates.  This model also aligns well with the statistical premise behind an 80 percent 

bound, i.e., we expect to see about 80 percent of the validation data points fall below this 

bound.  Thus, we find that this model best serves our purpose of predicting how much 

cost growth will occur for the Schedule cost growth category.  Table 16 shows all the 

model B validation results.      

Table 16 - Model B Validation Results 

Model 

% of Obs 
within UB

Usable Pts 
in Validation

# with Cost 
Growth # Missing

# obs 
used to 

build
Sch#1 - B4 66.67% 6 11 5 27
Sch#2 - B4 80.00% 10 11 1 36
Est - B5 100.00% 13 15 2 44  

Finally for Est-B5, we calculate our stated values and notice two missing values 

in the data set, leaving us with 13 usable data points to compute its accuracy.  Upon 

inspection of the 13 estimates, we find a remarkable 100 percent accuracy rate of the 

actual value being contained by the prediction bound.  Since this model was constructed 

with a large percentage of it original data points 68.8 percent, the most number of data 

points of any of the multiple regression B models, we are most confident in its results.  

Such results also seem to add credence to our modeling criteria specifically, maintaining 

the largest possible number of observations and significant parameter p-values.  See 

Appendix H for all the model B validation results. 

Rolling Validations 

Since Sch #1 - A5 validated at only 56 percent accuracy and Sch#1 – B4 validated 

at 66 percent accuracy, we investigate the use of a rolling validation window; otherwise 

known as “Jackknifing” to better evaluate these models’ true predictive capability.  We 
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do this by comparing each models actual cost growth data to either the logistic regression 

predicted value (1/0) or the back-transformed 80 percent upper bound for all 122 data 

points versus just for the 25 point validation set.  First, we take data points 1 – 25 

(validation set) and calculate the accuracy rate for this group.  Next, we take data points 

2-26 (2-24 from the validation set plus 1 data point from the original data set) and 

compute the accuracy.  We continue this successive process until we have rotated through 

the entire 122 data points.  Lastly, we compute the average and standard deviation for the 

entire process and graph the results for each respective model.   

From Figure 11 we see that Sch#1 - A5 achieves an average 74.59 percent 

accuracy rate when compared over the entire 122-point data set and Sch # - B4 achieves 

an average 87.30 percent accuracy.  Figure 11 also, shows histograms of the grouped 

accuracy rates for each model under review.  The Sch#1-A5 model shows the true 

distribution is highly skewed left indicating a strong possibility for lower accuracy 

predictions on average.  Sch#1 – B4’s plot shows a choppy distribution with large 

occurrences of high accuracy on the right side of the graph, low frequency in the middle 

and medium frequency on the right, producing a slight bath tub shape.  This shape 

suggests that on average the model will predict accurately but we can expect some 

variation in results (see standard deviation).   
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Avg 0.7459   Avg 0.8730 
Std Dev 0.0926   Std Dev 0.1284 

Figure 11 - Jackknife Results  

Overall, these results indicate that on average these models will perform 

reasonably well but incremental performance may be sub-par.  For example, Sch#1 – A5 

has an average accuracy rate of almost 75 percent yet it predicts below the 50 percent 

accuracy rate on a few occasions.  From this we realize, our initial validation scores are 

due to random chance and the best application for these models is with large data sets.  

Thus, we keep with our original selections as the “best” models discussed earlier in this 

chapter.  

Chapter Summary 

This chapter elaborates on our model development process, and describes the 

results from our analysis using these models.  We further authenticate the motive for 

using a two-step methodology consisting of: first, logistic regression to predict if a 

program will have cost growth and then second, multiple regression to determine how 

much cost growth will occur, based on the composition of our database.  We delve into 

the criteria and selection process used to establish both types of predictive models, and 
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assess the usefulness and accuracy of the models using a 25-point validation data set.  

From these results, we evaluate and select the best model from each category studied and 

present to the reader for scrutiny.   

Our analysis shows that to predict “if” a program will have cost growth from 

within the Schedule category of cost growth, model #2-A4 is preferred and within the 

Estimating category, model A7 is preferred.  To predict the amount of cost growth, we 

find that model #2-B4 is the most desirable in the Schedule category, and model B5 is 

preferred when in the Estimating cost growth arena.  A final discussion and application of 

these models is presented in the next chapter.   
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V.  Conclusions 

Chapter Overview  

This chapter reviews the pressures that exist in the DoD acquisition environment 

of major weapons systems procurement and which underscore the necessity of this 

research.  We explore previous cost growth research to investigate the causes of cost 

growth and for edification of historical or traditional methods of calculating cost growth.  

We discuss the limits, application and benefits of this research to the DoD cost estimating 

community, and assess our results with our initial research objective of reducing DoD 

weapons system cost growth.  Lastly, we present several possible follow-on topics to this 

research.          

Restatement of the Problem 

Two central problems face the DoD acquisition community today – reduced 

funding and escalating costs.  Excluding recent growth due to the War on Terrorism, the 

DoD budget declined 29.18 percent from 1985 to 2001.  This substantial decrease in 

budget size restricts current DoD acquisition programs and severely limits the growth of 

new programs.  Reduced funding levels exacerbate the second problem of spiraling major 

weapons system program cost and program overruns.  In fact, we find the average DoD 

major weapons system program experiences 20 plus percent cost growth from the time of 

start-up to full-scale production (Drezner, 1993:xiii; Coleman, 2000:19-20).   

These two opposing forces have a direct and negative impact on the cost 

estimators’ ability to deliver accurate, consistent and reliable program cost estimates.  

Our research seeks a partial solution to this problem.  Obviously, our study cannot 
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influence the Congressional budget process or stabilize funding of major weapons system 

programs.  But we can develop a tool to improve accuracy and reliability of cost 

estimates thus, limiting and perhaps preventing acquisition program cost growth.  

Specifically, our research develops a unique two-step statistical model to predict cost 

growth.  Our model provides the cost estimator with a quantitative tool to estimate 

program costs early in a programs acquisition lifecycle.  Our estimating tool is more 

reliable, based on quantitative methods, than subjective cost estimating methods normally 

available early in a programs life cycle.  Thus, as reliability increases, uncertainty about 

the program decreases, and cost growth (or cost risk) is reduced.   

Limitations 

We set out to predict cost growth for the Schedule, Estimating, Support and Other 

SAR cost growth categories, but discover insufficient cost growth data to support 

inferential analysis of the Support and Other cost growth areas.  This limits our research 

to descriptive measures only for the Support and Other cost growth areas yet, does not 

hamper a complete inferential analysis of the Schedule and Estimating SAR cost growth 

areas. 

We build our models from historical SAR reports of DoD acquisition programs 

between 1990 and 2001.  We include only programs with a DE baseline estimate falling 

within this time period and focus exclusively on RDT&E funds.  Hence, we are further 

limited by these boundaries in the use and application of our results.  Lastly, we caution 

the reader against extrapolation of our results beyond the aforementioned bounds used to 
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develop them.  Use of these models beyond these confines may produce erroneous 

results.                

Review of Literature   

We perform a review of recent literature on cost growth within the DoD.  We find 

many studies that explore the roots causes of cost growth, as well as, seek to predict cost 

growth with regression models.  Many studies use SAR reports as the source data from 

which they compute cost growth.  Consequently, we find many similarities between the 

(historical) literature review studies and individual elements of our research effort 

however; we find only one study that parallels ours in scope.  Sipple (2002) focuses on 

cost growth of RDT&E funded programs that use a DE baseline estimate, and predicts 

the SAR cost growth category of Engineering.  In addition, Sipple assembles a pool of 78 

predictor variables extracted from twelve historical cost growth studies.  The near 

identical match between Sipple’s (2002) research and ours leads us to the conclusion we 

can effectively pattern our methodology on Sipple’s findings.  That is, we benchmark 

Sipple’s predictor variables, procedures and overall methodology for use in our research.   

Review of Methodology 

Our two-step methodology of predicting cost growth is new to the cost estimation 

field.  The two-step methodology, introduced by Sipple (2002), establishes the use of 

first, logistic regression to predict “if” a program will have cost growth and second, if 

applicable, multiple regression to estimate the amount of cost growth expected.  This 

process is new because the traditional (historical) method of predicting cost growth 

originates around a single-step regression process.   
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We build upon Sipple’s (2002) existing SAR database comprised of major 

acquisition programs from all service components, which use a DE baseline estimate.  

The database contains both RDT&E and procurement dollar programs that have an EMD 

phase of development between 1990 and 2000, to which, we add calendar year 2001 

programmatic data.  This research focuses strictly on RDT&E dollar accounts yet, we 

collect procurement dollars information in our process to amass a comprehensive 

database and to allow for possible follow-on research.  (See the last section of this 

chapter for further follow-on topics.)  We convert all programmatic dollar amounts into a 

common base year (2002) and compute our response variables.  Since our database 

contains a mixture distribution, a point mass of data centered on zero and continuous 

elsewhere, we split the data into two parts (discrete and continuous) and model each 

independently.  This database contains 122 total data points of which 25 data points (20 

percent) are set aside for validation, leaving 97 data points (80 percent) for model 

development.   

We first, compute the logistic regression Y response variable R&D Cost Growth? 

for each of our SAR cost growth categories (Schedule, Estimating, Support and Other) to 

model the discrete data.  These variables represent the binary response to the question 

“does my program have cost growth?” where 1 equals “yes” and 0 equals “no.”  Next, we 

compute the multiple regression Y response variables - Schedule %, Estimating%, 

Support %, Other % for use with the continuous data.  These variables represent the total 

cost variance (in RDT&E dollars) divided by the respective DE baseline estimate, and 

answer the question “how much cost growth will occur?”  For identification purposes, we 

call the logistic regression model (A) and the multiple regression model (B).   
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We investigate the response variables and discover the Support and Other 

category do not have sufficient data to support inferential statistical regression.  Thus, we 

limit analysis of these two areas to descriptive measures only.  We also discover that we 

must use a log normal transformation on the model B Y response variables to correct for 

heteroscedasticity in the residual plots.  The use of the log transformed Y response 

ensures that the underlying assumptions of OLS regression are met.   

Development of models A and B employ the Darwinist variable selection strategy 

described earlier in this thesis and culminate in a pool of candidate “best” models for 

each category under investigation.  We authenticate the single “best” model from the pool 

of candidate models with our validation data set.  We also perform a further statistical 

investigation of two models to confirm the true accuracy rate using the “Jackknife” 

procedure of resampling.  

Restatement of Results 

Our analysis finds that predicting “if” a program will have cost growth (model A), 

in the Schedule category of cost growth, model #2-A4 is preferred (Appendix B).  This 

model accurately predicts approximately 85 percent of the validation data and all four 

predictor variables are significant with p-values less than 0.05.  In the Estimating cost 

growth category, model A7 (Appendix C) accurately predicts approximately 78 percent 

of the validation data.  Four of the seven predictor variables are highly significant with p-

values below 0.01, and two of the remaining three variables are below 0.05.        

We find that when predicting the “amount” of cost growth a program will 

experience (model B) in the Schedule cost growth category that model #2-B4 is the most 
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desirable.  This model accurately predicts 80 percent of the validation data and all four 

predictor variables are significant with p-values less than 0.02.  In the Estimating cost 

growth category, model B5 accurately predicts 100 percent of the validation data and 

three of the five predictor variables are highly significant with p-values <0.0001, and the 

remaining two variables p-values are less than 0.02.   

Recommendations 

Our research confirms the appropriateness of logistic regression in DoD cost 

analysis, and substantiates the aptness of the two-step methodology to predict cost growth 

in DoD major weapons systems acquisitions.  Use of logistic regression and the two-step 

methodology provide cost estimators a tool to accurately estimate the cost of weapons 

programs while it improves reliability of the cost estimate.  Such steps support 

Congressional and Presidential direction to calculate the true or “realistic cost” of DoD 

acquisition programs.     

Logistic regression predicts a binary or dichotomous response.  When used in 

conjunction with OLS regression (and the Y response is log transformed), as in our two-

step model, it acts as a filter to remove noise or bias from the data stream.  The result is a 

clear, more reliable picture of a weapons system program cost.  Moreover, use of logistic 

regression allows cost estimators to specify a percentage level of certainty for the 

predicted outcome.  For example, a conservative approach might set the model controls at 

25 percent or more = “yes”, otherwise “no” (the lower the level is set the more likely the 

model is to predict cost growth, and the higher the initial estimate, due to the increased 

prediction, the lower cost growth will be).  This flexibility allows cost estimators to 
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adjust the sensitivity level or conservativeness of each individual estimate as necessary to 

meet program requirements and used responsibly adds to the presidential call for more 

realistic estimates.     

This research demonstrates the effectiveness of logistic regression and OLS 

regression to predict DoD weapons system cost growth.  Logistic regression which 

predicts if a program will have cost growth (yes/no) and, when applicable (yes 

responses), OLS regression predicts the amount of cost growth expected.  Clearly, the 

advantages and benefits of this model warrant its implementation for use across the DoD 

in estimating major weapons system program costs.  We further submit that use of 

logistic regression has a wider place within the DoD community that is as yet 

unrecognized.  For example, logistic regression is used extensively, and successfully, in 

other industries like the medical occupation career field to predict (true/false) infectious 

diseases.  The DoD should learn from this civilian industry practice and adopt the use of 

logistic regression not only for major weapons system cost estimates but also for day-to-

day cost analysis decisions.     

Possible Follow-on Theses 

We recommend further cost growth analysis using the two-step methodology 

demonstrated by this research, as well as, exploitation of our extensive database.   

Although, this research completes the study of the individual SAR cost growth categories 

within the RDT&E area, there are several other possibilities for meaningful research.  For 

example:  

• Calculate the overall RDT&E cost growth and compare with the 
combined results obtained from our thesis and Sipple’s (2002). 
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• Calculate individual SAR category cost growth for the 

procurement accounts within the EMD phase.   
 
• Calculate a combined cost growth estimate for the RDT&E and 

procurement accounts within EMD.   
 
• Compare individual RDT&E cost growth with individual 

procurement cost growth.  Identify trends, accuracy and root 
causes within each category.  

 
• Compare overall RDT&E cost growth with overall procurement 

cost growth.  Identify trends, accuracy and root causes.  
 

• Expand methodology to other phases of acquisition (PDRR and 
procurement).  Develop predictive “forecast” variable to link cost 
growth between phases. 

 
 

Chapter Summary 

 
This research, combined with Sipple’s (2002), presents a solid picture of the 

drivers of EMD cost growth and develops associated tools for predicting cost within this 

arena.  We investigate thousands of individual regressions to find the germane 

characteristics that drive cost growth in the SAR cost growth areas of Schedule and 

Estimating, and develop two models A and B for predicting cost growth.  We show that 

the two-step methodology is required due to the composition (mixture distribution) of our 

data, and that such a process produces meaningful, reliable statistical results from which 

accurate cost estimates can be derived. 
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Appendix A – Schedule Cost Growth Five Variable A Model 

Nominal Logistic Fit for R&D (Schedule) Cost Growth? 
 
RSquare (U) 0.3285
Observations (or Sum Wgts) 95
 
 
Parameter Estimates 
Term  Estimate Std Error ChiSquare Prob>ChiSq
Intercept  2.97536859 0.7519593 15.66 <.0001
Maturity (Funding Yrs complete)  -0.2364067 0.0552939 18.28 <.0001
AR Involvement?  1.91631441 0.6591188 8.45 0.0036
Versions Previous to SAR  -1.811036 0.6220835 8.48 0.0036
RAND Prototype?  1.05138325 0.5951769 3.12 0.0773
Northrop Grumman  -2.3214554 1.0328553 5.05 0.0246
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Appendix B – Schedule Cost Growth Four Variable A Model 

Nominal Logistic Fit for R&D (Schedule) Cost Growth? 
 
RSquare (U) 0.4808
Observations (or Sum Wgts) 35
 
 
Parameter Estimates 
Term  Estimate Std Error ChiSquare Prob>ChiSq
Intercept  1.69362835 1.3565459 1.56 0.2119
Maturity (Funding Yrs complete)  -0.2307171 0.1005855 5.26 0.0218
Electronic  3.61862193 1.5060579 5.77 0.0163
New RAND Concurrency Measure %  -0.0098235 0.0045787 4.60 0.0319
Service = AF only  -3.7930794 1.6912753 5.03 0.0249
 
Receiver Operating Characteristic 

Tr
ue

 P
os

iti
ve

Se
ns

iti
vi

ty

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00
1-Specificity
False Positive

 
Area Under Curve =  
0.92000__



 

 86

Appendix C – Estimating Cost Growth Seven Variable A Model 

Nominal Logistic Fit for R&D (Estimating) Cost Growth? 
 
RSquare (U) 0.4184
Observations (or Sum Wgts) 88
 
 
Parameter Estimates 
Term  Estimate Std Error ChiSquare Prob>ChiSq
Intercept  1.73236112 1.0518102 2.71 0.0996
Length of R&D in Funding Yrs  -0.2342976 0.0608878 14.81 0.0001
Versions Previous to SAR  -1.7689849 0.7153578 6.12 0.0134
N Involvement?  2.64212378 0.7978189 10.97 0.0009
Did it have a PE ?  -3.1530811 1.1713143 7.25 0.0071
RAND Lead Svc = DoD  6.49342975 2.4005851 7.32 0.0068
Did it have a MS I ?  1.5486272 0.7774387 3.97 0.0464
RAND Prototype?  -1.1289653 0.6633286 2.90 0.0888
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Appendix D – Schedule Cost Growth #1 Four Variable B Model 

Whole Model 
Actual by Predicted Plot 

-6

-5

-4

-3

-2

LN
 S

ch
ed

 A
ct

ua
l

-6 -5 -4 -3 -2 -1
LN Sched Predicted P<.0001 RSq=0.73
RMSE=0.7298

 
 
Summary of Fit 
  
RSquare 0.729634
RSquare Adj 0.680476
Root Mean Square Error 0.729794
Mean of Response -3.20054
Observations (or Sum Wgts) 27
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  -2.292496 0.193583 -11.84 <.0001
Boeing  -1.682862 0.312896 -5.38 <.0001
Land Vehicle  -3.925248 0.755936 -5.19 <.0001
RAND Concurrency Measure Interval  0.0008494 0.000329 2.58 0.0171
Space  1.4342709 0.575692 2.49 0.0208
 
Residual by Predicted Plot 
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Appendix E – Schedule Cost Growth #2 Four Variable B Model 

Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
  
RSquare 0.662501
RSquare Adj 0.618953
Root Mean Square Error 0.812668
Mean of Response -3.07976
Observations (or Sum Wgts) 36
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  -1.52265 0.296423 -5.14 <.0001 
Boeing  -1.495189 0.299541 -4.99 <.0001 
Land Vehicle  -4.660582 0.865041 -5.39 <.0001 
RAND Lead Svc = Navy  -0.978341 0.280881 -3.48 0.0015 
Did it have a MS I ?  -0.779745 0.318957 -2.44 0.0204 
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Appendix F – Estimating Cost Growth Five Variable B Model 

Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
  
RSquare 0.578022
RSquare Adj 0.522499
Root Mean Square Error 0.7468
Mean of Response -1.3887
Observations (or Sum Wgts) 44
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  -1.147983 0.250922 -4.58 <.0001
IOC -Based Maturity of EMD %  0.5759717 0.131413 4.38 <.0001
Proc Funding Yr Maturity %  -1.910945 0.404058 -4.73 <.0001
General Dynamics  -1.282748 0.378116 -3.39 0.0016
RAND Lead Svc = Navy  0.7926428 0.252644 3.14 0.0033
Did it have a PE ?  -0.927261 0.301534 -3.08 0.0039
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Appendix G – Model A Validation Results  

Sch#1 A5

Actual    
LN - Sch

Most Likely 
ValidSchA#1

Actual Sch 
Cost Growth Correct ?

1 -2.096716 1 1 Yes
2 -2.819633 1 1 Yes
3 . 1 0 No
4 -4.065817 1 1 Yes
5 . 1 0 No
6 -1.637677 0 1 No
7 . 0 0 Yes
8 . 0 0 Yes
9 . 1 0 No
10 -1.732971 0 1 No
11 . 1 0 No
12 -1.963355 1 1 Yes
13 . 1 0 No
14 . 0 0 Yes
15 . 0 0 Yes
16 . 1 0 No
17 -2.462601 1 1 Yes
18 -3.330922 0 1 No
19 -1.862817 0 1 No
20 -5.787841 1 1 Yes
21 . 0 0 Yes
22 . 0 0 Yes
23 . 0 0 Yes
24 -7.785513 0 1 No
25 . 0 0 Yes

Counts
14 Yes
11 No

56.00% Accuracy Rate  
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Appendix G – Model A Validation Results  

Sch#2 A4
Actual    

LN - Sch
Most Likely 

ValidSchA#2
Actual Sch 

Cost Growth Correct ?
1 -2.096716 1 N/A
2 -2.819633 1 N/A
3 . 0 N/A
4 -4.065817 1 1 Yes
5 . 1 0 No
6 -1.637677 1 N/A
7 . 0 N/A
8 . 0 0 Yes
9 . 0 N/A
10 -1.732971 1 1 Yes
11 . 0 N/A
12 -1.963355 1 N/A
13 . 0 N/A
14 . 0 N/A
15 . 0 N/A
16 . 0 0 Yes
17 -2.462601 1 N/A
18 -3.330922 1 N/A
19 -1.862817 1 N/A
20 -5.787841 1 N/A
21 . 0 0 Yes
22 . 0 N/A
23 . 0 N/A
24 -7.785513 1 N/A
25 . 0 0 Yes

Counts
6 Yes
1 No

85.71% Accuracy Rate  

 



 

 92

Appendix G – Model A Validation Results  

Est - A7
Actual   

LN - Est
Most Likely 
ValidaEstA

Actual Est 
Cost Growth Correct ?

1 -0.980085 1 1 Yes
2 . 0 0 Yes
3 . 0 0 Yes
4 -2.137925 1 1 Yes
5 -2.068357 1 1 Yes
6 -3.900665 1 N/A
7 -5.946093 1 1 Yes
8 -3.849291 1 1 Yes
9 . 1 0 No
10 -2.063063 1 1 Yes
11 -2.180035 1 1 Yes
12 -2.054327 1 1 Yes
13 -1.756433 1 1 Yes
14 . 1 0 No
15 . 0 0 Yes
16 -2.877427 1 1 Yes
17 . 0 0 Yes
18 -0.758505 0 1 No
19 -2.266171 1 1 Yes
20 . 1 0 No
21 . 1 0 No
22 -3.212324 1 1 Yes
23 . 0 N/A
24 -0.930631 1 1 Yes
25 . 0 0 Yes

Counts
18 Yes
5 No

78.26% Accuracy Rate  
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Appendix H – Model B Validation Results  

Schedule#1-B4 Model

Validation
Actual CG 

- Sch 
Predicted 
LN - Sch

StdErr 
Indiv LN - 
Sch

Sch #1 B4 
80% UB

Back-T 
Sch#1B4 
80%

Actual 
within PB?

1 0.122859 -0.849618 0.953497 0.409951 1.506745 Yes
2 0.059628 . . . . No Data
3 -3.2215 0.817192 -2.14199 0.117421 No Data
4 0.017149 -2.352829 0.754019 -1.35677 0.257491 Yes
5 -3.958087 0.776786 -2.931953 0.053293 No Data
6 0.194431 . . . . No Data
7 . . . . No Data
8 -3.95469 0.77697 -2.928312 0.053487 No Data
9 -3.088801 0.798727 -2.033683 0.130853 No Data

10 0.176758 -2.297649 0.754917 -1.300403 0.272422 Yes
11 -2.293374 0.755012 -1.296003 0.273623 No Data
12 0.140387 -7.045929 1.084908 -5.612766 0.003651 No
13 . . . . No Data
14 -2.308011 0.754702 -1.311049 0.269537 No Data
15 . . . . No Data
16 -3.808175 0.786957 -2.768604 0.06275 No Data
17 0.085213 . . . . No Data
18 0.03576 . . . . No Data
19 0.155235 -4.825031 0.802419 -3.765036 0.023167 No
20 0.003065 . . . . No Data
21 -2.288164 0.755132 -1.290635 0.275096 No Data
22 -2.261466 0.755834 -1.263009 0.282802 No Data
23 -2.285616 0.755193 -1.288006 0.27582 No Data
24 0.000416 -2.263165 0.755785 -1.264773 0.282303 Yes
25 -3.952085 0.777113 -2.92552 0.053637 No Data

Counts
4 Yes
2 No

66.67% Obs Within PB  
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Appendix H – Model B Validation Results  

Schedule#2 B4

Validation
CG - Sch 
(actual)

Predicted 
LN - Sch 2

StdErr 
Indiv LN - 
Sch 2

Sch#2 B4 
80% UB

Back-T 
Sch#2 B4 
80%

Actual 
within PB?

1 0.122859 -1.52265 0.865041 -0.390311 0.676846 Yes
2 0.059628 -3.797584 0.857755 -2.674783 0.068922 Yes
3 -3.280736 0.846293 -2.172938 0.113843 No Data
4 0.017149 -3.280736 0.846293 -2.172938 0.113843 Yes
5 -3.797584 0.857755 -2.674783 0.068922 No Data
6 0.194431 . . . . No Data
7 -2.302395 0.846266 -1.194632 0.302815 No Data
8 -3.99618 0.912236 -2.802063 0.060685 No Data
9 -2.302395 0.846266 -1.194632 0.302815 No Data

10 0.176758 -2.302395 0.846266 -1.194632 0.302815 Yes
11 -1.52265 0.865041 -0.390311 0.676846 No Data
12 0.140387 -6.962977 1.192724 -5.401702 0.004509 No
13 -1.52265 0.865041 -0.390311 0.676846 No Data
14 -2.302395 0.846266 -1.194632 0.302815 No Data
15 -3.280736 0.846293 -2.172938 0.113843 No Data
16 -3.797584 0.857755 -2.674783 0.068922 No Data
17 0.085213 -3.280736 0.846293 -2.172938 0.113843 Yes
18 0.03576 -2.302395 0.846266 -1.194632 0.302815 Yes
19 0.155235 -3.797584 0.857755 -2.674783 0.068922 No
20 0.003065 -3.797584 0.857755 -2.674783 0.068922 Yes
21 -1.52265 0.865041 -0.390311 0.676846 No Data
22 -3.280736 0.846293 -2.172938 0.113843 No Data
23 . . . . No Data
24 0.000416 -2.500991 0.87791 -1.351806 0.258772 Yes
25 -3.797584 0.857755 -2.674783 0.068922 No Data

Counts
8 Yes
2 No

80.00% Obs Within PB  
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Appendix H – Model B Validation Results 

Estimating B5 Model

Validation
CG - Est 
(actual)

Predicted 
LN - Est

StdErr 
Indiv LN - 
Est

 Est B5 
80%  UB

Back-T 
Est B5 
80%

Actual 
within PB?

1 0.375279 -1.710195 0.783303 -0.688768 0.502194 Yes
2 -0.630784 0.781725 0.388586 1.474894 No Data
3 . . . . No Data
4 0.117899 -0.679015 0.802652 0.367643 1.444326 Yes
5 0.126393 -0.958136 0.768712 0.044265 1.045259 Yes
6 0.020228 -1.206511 0.779912 -0.189505 0.827368 Yes
7 0.002616 -2.621745 0.803697 -1.573724 0.207272 Yes
8 0.021295 -1.400352 0.797057 -0.36099 0.696986 Yes
9 . . . . No Data

10 0.127064 -1.449161 0.762222 -0.455223 0.634307 Yes
11 0.113038 -2.207531 0.784706 -1.184274 0.305968 Yes
12 0.128179 -2.229841 0.786328 -1.20447 0.299851 Yes
13 0.17266 . . . . No Data
14 . . . . No Data
15 -0.193133 0.809043 0.86186 2.367559 No Data
16 0.056279 -2.343332 0.789689 -1.313578 0.268856 Yes
17 -0.827515 0.794223 0.208152 1.2314 No Data
18 0.468366 . . . . No Data
19 0.103709 -2.10749 0.785515 -1.083178 0.338518 Yes
20 . . . . No Data
21 -0.773077 0.818824 0.294669 1.342682 No Data
22 0.040263 -0.814615 0.781138 0.203989 1.226285 Yes
23 -2.019325 0.836534 -0.928485 0.395152 No Data
24 0.394305 -0.535374 0.784926 0.48817 1.629332 Yes
25 -1.343795 0.765565 -0.345498 0.707868 No Data

Counts
13 Yes
0 No

100.00% Obs Within PB  
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